首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Parke D 《Journal of bacteriology》2000,182(21):6145-6153
A positive selection method for mutations affecting bioconversion of aromatic compounds was applied to a mutant strain of Agrobacterium tumefaciens A348. The nucleotide sequence of the A348 pcaHGB genes, which encode protocatechuate 3,4-dioxygenase (PcaHG) and beta-carboxy-cis,cis-muconate cycloisomerase (PcaB) for the first two steps in catabolism of the diphenolic protocatechuate, was determined. An omega element was introduced into the pcaB gene of A348, creating strain ADO2077. In the presence of phenolic compounds that can serve as carbon sources, growth of ADO2077 is inhibited due to accumulation of the tricarboxylate intermediate. The toxic effect, previously described for Acinetobacter sp., affords a powerful selection for suppressor mutations in genes required for upstream catabolic steps. By monitoring loss of the marker in pcaB, it was possible to determine that the formation of deletions was minimal compared to results obtained with Acinetobacter sp. Thus, the tricarboxylic acid trick in and of itself does not appear to select for large deletion mutations. The power of the selection was demonstrated by targeting the pcaHG genes of A. tumefaciens for spontaneous mutation. Sixteen strains carrying putative second-site mutations in pcaH or -G were subjected to sequence analysis. All single-site events, their mutations revealed no particular bias toward multibase deletions or unusual patterns: five (-1) frameshifts, one (+1) frameshift, one tandem duplication of 88 bp, one deletion of 92 bp, one nonsense mutation, and seven missense mutations. PcaHG is considered to be the prototypical ferric intradiol dioxygenase. The missense mutations served to corroborate the significance of active site amino acid residues deduced from crystal structures of PcaHG from Pseudomonas putida and Acinetobacter sp. as well as of residues in other parts of the enzyme.  相似文献   

2.
Bacteria containing spontaneous null mutations in pcaH and -G, structural genes for protocatechuate 3,4-dioxygenase, were selected by exposure of an Acinetobacter calcoaceticus strain to physiological conditions in which expression of the genes prevents growth. The parental bacterial strain exhibits high competence for natural transformation, and this procedure was used to characterize 94 independently isolated spontaneous mutations. Four of the mutations were caused by integration of a newly identified insertion sequence, IS1236. Many (22 of 94) of the mutations were lengthy deletions, the largest of which appeared to eliminate at least 17 kb of DNA containing most of the pca-qui-pob supraoperonic gene cluster. DNA sequence determination revealed that the endpoints of four smaller deletions (74 to 440 bp in length) contained DNA sequence repetitions aligned imprecisely with the sites of mutation. Analysis of direct and inverted DNA sequence repetitions associated with the sites of mutation suggested the existence of DNA slippage structures that make unhybridized nucleotides particularly susceptible to mutation.  相似文献   

3.
Acinetobacter lwoffii K24 known as an aniline degrading bacterium has also been found to utilize p-hydroxybenzoate as a sole carbon source. In this study, 2-DE using Q-Sepharose column separation was attempted for fast screening of protocatechuate 3,4-dioxygenase for catabolism of p-hydroxybenzoate in A. lwoffii K24. Two protocatechuate 3,4-dioxygenase subunits, pcaG and pcaH were detected and identified with N-terminal and internal sequencing, suggesting proteomics using a column separation may be helpful for the identification of specific protein spots and maximizing the detectable protein spots on the 2-DE gel. The PCR process using degenerate primers for protocatechuate 3,4-dioxygenase and sequence analyses of the PCR products revealed the existence of pcaH and pcaG in A. lwoffii K24. These two subunits were found to be closely located and share extensive homology with pcaH and pcaG of Pseudomonas marginata or Pseudomonas cepacia, providing the evidence that A. lwoffi K24 has the protocatechuate branches as well as catechol branches of beta-ketoadipate pathway.  相似文献   

4.
5.
VanK is the fourth member of the ubiquitous major facilitator superfamily of transport proteins to be identified that, together with PcaK, BenK, and MucK, contributes to aromatic catabolism in Acinetobacter sp. strain ADP1. VanK and PcaK have overlapping specificity for p-hydroxybenzoate and, most clearly, for protocatechuate: inactivation of both proteins severely impairs growth with protocatechuate, and the activity of either protein alone can mask the phenotype associated with inactivation of its homolog. Furthermore, vanK pcaK double-knockout mutants appear completely unable to grow in liquid culture with the hydroaromatic compound quinate, although such cells on plates convert quinate to protocatechuate, which then accumulates extracellularly and is readily visible as purple staining. This provides genetic evidence that quinate is converted to protocatechuate in the periplasm and is in line with the early argument that quinate catabolism should be physically separated from aromatic amino acid biosynthesis in the cytoplasm so as to avoid potential competition for intermediates common to both pathways. Previous studies of aromatic catabolism in Acinetobacter have taken advantage of the ability to select directly strains that contain a spontaneous mutation blocking the beta-ketoadipate pathway and preventing the toxic accumulation of carboxymuconate. By using this procedure, strains with a mutation in structural or regulatory genes blocking degradation of vanillate, p-hydroxybenzoate, or protocatechuate were selected. In this study, the overlapping specificity of the VanK and PcaK permeases was exploited to directly select strains with a mutation in either vanK or pcaK. Spontaneous mutations identified in vanK include a hot spot for frameshift mutation due to contraction of a G6 mononucleotide repeat as well as point mutations producing amino acid substitutions useful for analysis of VanK structure and function. Preliminary second-site suppression analysis using transformation-facilitated PCR mutagenesis in one VanK mutant gave results similar to those using LacY, the prototypic member of the major facilitator superfamily, consistent with the two proteins having a similar mechanism of action. The selection for transport mutants described here for Acinetobacter may also be applicable to Pseudomonas putida, where the PcaK permease has an additional role in chemotaxis.  相似文献   

6.
Degradation of p-benzyloxyphenol by Acinetobacter sp.   总被引:1,自引:0,他引:1  
Abstract Acinetobacter sp. utilized p -benzyloxyphenol as sole carbon source and degraded it to p -hydroxybenzaldehyde, p -hydroxybenzoic acid, protocatechuic acid and catechol. The intermediates were identified by paper chromatography, TLC, IR, GC and HPLC. Acinetobacter sp. produced protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase during the degradation of p -benzoloxyphenol.  相似文献   

7.
An Acinetobacter sp. utilized 2-methoxy-4-formylphenoxyacetic acid, dehydrodivanillyl alcohol, dehydrodiisoeugenol and conidendrin as sole carbon source. It also degraded 14C-labelled DHP lignin and teakwood lignin. Vanillic acid, protocatechuic acid and catechol were separated from 2-methoxy-4-formylphenoxyacetic acid grown cultures. Both protocatechuic acid and catechol were formed from dehydrodivanillyl alcohol, dehydrodiisoeugenol and conidendrin. On the dimeric lignin model substances this Acinetobacter sp. produced protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase.  相似文献   

8.
The combined analysis of peptide mass fingerprinting and 2-DE/MS using the induced and selected protein spots following growth of Pseudomonas sp. DU102 on benzoate or p-hydroxybenzoate revealed not only alpha- and beta-subunits of protocatechuate 3,4-dioxygenase but also catechol 1,2-dioxygenase responsible for ortho-pathway through ring-cleavage of aromatic compounds. Toluate 1,2-dioxygenase and p-hydroxybenzoate hydroxylase were also identified. Purification of intradiol dioxygenases such as catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase from the benzoate or p-hydroxybenzoate culture makes it possible to trace the biodegradation pathway of strain DU102 for monocyclic aromatic hydrocarbons. Interestingly, vanillin-induced protocatechuate 3,4-dioxygenase was identical in amino acid sequences with protocatechuate 3,4-dioxygenase from p-hydroxybenzoate.  相似文献   

9.
Pseudomonas sp. strain HR199 is able to utilize eugenol (4-allyl-2-methoxyphenol), vanillin (4-hydroxy-3-methoxybenzaldehyde), or protocatechuate as the sole carbon source for growth. Mutants of this strain which were impaired in the catabolism of vanillin but retained the ability to utilize eugenol or protocatechuate were obtained after nitrosoguanidine mutagenesis. One mutant (SK6169) was used as recipient of a Pseudomonas sp. strain HR199 genomic library in cosmid pVK100, and phenotypic complementation was achieved with a 5.8-kbp EcoRI fragment (E58). The amino acid sequences deduced from two corresponding open reading frames (ORF) identified on E58 revealed high degrees of homology to pcaG and pcaH, encoding the two subunits of protocatechuate 3,4-dioxygenase. Three additional ORF most probably encoded a 4-hydroxybenzoate 3-hydroxylase (PobA) and two putative regulatory proteins, which exhibited homology to PcaQ of Agrobacterium tumefaciens and PobR of Pseudomonas aeruginosa, respectively. Since mutant SK6169 was also complemented by a subfragment of E58 that harbored only pcaH, this mutant was most probably lacking a functional beta subunit of the protocatechuate 3, 4-dioxygenase. Since this mutant was still able to grow on protocatechuate and lacked protocatechuate 4,5-dioxygenase and protocatechuate 2,3-dioxygenase, the degradation had to be catalyzed by different enzymes. Two other mutants (SK6184 and SK6190), which were also impaired in the catabolism of vanillin, were not complemented by fragment E58. Since these mutants accumulated 3-carboxy muconolactone during cultivation on eugenol, they most probably exhibited a defect in a step of the catabolic pathway following the ortho cleavage. Moreover, in these mutants cyclization of 3-carboxymuconic acid seems to occur by a syn absolute stereochemical course, which is normally only observed for cis, cis-muconate lactonization in pseudomonads. In conclusion, vanillin is degraded through the ortho-cleavage pathway in Pseudomonas sp. strain HR199 whereas protocatechuate could also be metabolized via a different pathway in the mutants.  相似文献   

10.
Acinetobacter sp. evolved 14CO2 from 14C-(ring)DHP lignin and 14C-teakwood lignin. Veratrylglycerol-beta-guaiacyl ether, a lignin model compound with beta-o-4 linkage was cleaved by Acinetobacter sp. Veratrylglycerol-beta-guaiacyl ether into 2(o-methoxyphenoxy) ethanol and veratrylalcohol 2(o-methoxyphenoxy) ethanol was degraded to guaiacol and then to catechol whereas veratrylalcohol was converted to veratraldehyde, veratric acid, vanillic acid, protocatechuic acid and catechol. Both catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase were detected in veratrylglycerol-beta-guaiacyl ether grown cultures.  相似文献   

11.
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

12.
E Grund  C Knorr    R Eichenlaub 《Applied microbiology》1990,56(5):1459-1464
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

13.
A total of 39 phenol- and p-cresol-degraders isolated from the river water continuously polluted with phenolic compounds of oil shale leachate were studied. Species identification by BIOLOG GN analysis revealed 21 strains of Pseudomonas fluorescens (4, 8 and 9 of biotypes A, C and G, respectively), 12 of Pseudomonas mendocina, four of Pseudomonas putida biotype A1, one of Pseudomonas corrugata and one of Acinetobacter genospecies 15. Computer-assisted analysis of rep-PCR fingerprints clustered the strains into groups with good concordance with the BIOLOG GN data. Three main catabolic types of degradation of phenol and p-cresol were revealed. Type I, or meta-meta type (15 strains), was characterized by meta cleavage of catechol by catechol 2,3-dioxygenase (C23O) during the growth on phenol and p-cresol. These strains carried C23O genes which gave PCR products with specific xylE-gene primers. Type II, or ortho-ortho type (13 strains), was characterized by the degradation of phenol through ortho fission of catechol by catechol 1,2-dioxygenase (C12O) and p-cresol via ortho cleavage of protocatechuic acid by protocatechuate 3,4-dioxygenase (PC34O). These strains carried phenol monooxygenase gene which gave PCR products with pheA-gene primers. Type III, or meta-ortho type (11 strains), was characterized by the degradation of phenol by C23O and p-cresol via the protocatechuate ortho pathway by the induction of PC34O and this carried C23O genes which gave PCR products with C23O-gene primers, but not with specific xylE-gene primers. In type III strains phenol also induced the p-cresol protocatechuate pathway, as revealed by the induction of p-cresol methylhydroxylase. These results demonstrate multiplicity of catabolic types of degradation of phenol and p-cresol and the existence of characteristic assemblages of species and specific genotypes among the strains isolated from the polluted river water.  相似文献   

14.
The DNA sequence of a 1.6-kilobase-pair SalI-KpnI Acinetobacter calcoaceticus restriction fragment carrying catA, the structural gene for catechol 1,2-dioxygenase I, was determined. The 933-nucleotide gene encodes a protein product with a deduced molecular weight of 34,351. The similarly sized Pseudomonas clcA gene encodes catechol 1,2-dioxygenase II, an enzyme with relatively broad substrate specificity and relatively low catalytic efficiency. Comparison of the catA and clcA sequences demonstrated their common ancestry and suggested that acquisitions of direct and inverted sequence repetitions of 6 to 10 base pairs were frequent events in their evolutionary divergence. The catechol 1,2-dioxygenases proved to be evolutionarily homologous with the alpha and beta subunits of Pseudomonas protocatechuate 3,4-dioxygenase, and analysis of conserved residues in the intradiol dioxygenases revealed conserved histidyl and tyrosyl residues that are probably involved in the ligation of ferric ion in their active sites.  相似文献   

15.
In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase alpha subunit (BenA)] of the beta-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenase alpha subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaB)] of the beta-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the beta-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADP1. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different beta-ketoadipate pathway from other Acinetobacter species.  相似文献   

16.
17.
The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones.  相似文献   

18.
The locations of the genes for the alpha and beta subunits of protocatechuate 3,4-dioxygenase (EC 1.13.11.3) on a 9.5-kilobase-pair PstI fragment cloned from the Pseudomonas cepacia DBO1 chromosome were determined. This was accomplished through the construction of several subclones into the broad-host-range cloning vectors pRO2317, pRO2320, and pRO2321. The ability of each subclone to complement mutations in protocatechuate 3,4-dioxygenase (pcaA) was tested in mutant strains derived from P. cepacia, Pseudomonas aeruginosa, and Pseudomonas putida. These complementation studies also showed that the two subunits were expressed from the same promoter. The nucleotide sequence of the region encoding for protocatechuate 3,4-dioxygenase was determined. The deduced amino acid sequence matched that determined by N-terminal analysis of regions of the isolated enzyme. Although over 400 nucleotides were sequenced before the start of the genes, no homology to known promoters was found. However, a terminator stem-loop structure was found immediately after the genes. The deduced amino acid sequence showed extensive homology with the previously determined amino acid sequence of protocatechuate 3,4-dioxygenase from another Pseudomonas species.  相似文献   

19.
NCIMB 10467是一株木质素降解菌,根据其16S rDNA序列将其重新分类为Burkholderia菌属.研究显示,在NCIMB 10467菌株中,不同的底物可以诱导该菌株对于原儿茶酸的多种代谢形式.根据克隆到的一段原儿茶酸邻位开环酶,即原儿茶酸3,4-双加氧酶(P34D;EC 1.13.11.3)α-亚基的保守序列,通过染色体步移的方法,得到一段9505bp的DNA片段.序列分析显示,在这段9.5 kb的DNA片段中,两个可能的开放阅读框pcaG和pcaH分别编码P34D的α-亚基和β-亚基.将pcaGH克隆并在大肠杆菌中进行表达后,可以检测到P34D的活性.而pcaH在NCIMB 10467菌株中的敲除则使该菌完全丧失了代谢原儿茶酸的能力.由此证实,克隆到的pcaGH基因确实编码原儿茶酸3,4-双加氧酶,并且对于NCIMB 10467菌株对原儿茶酸的代谢是必需的.  相似文献   

20.
Phenol is a toxic aromatic compound used or produced in many industries and as a result a common component of industrial wastewaters. Phenol containing waste streams are frequently hypersaline and therefore require halophilic microorganisms for efficient biotreatment without dilution. In this study three halophilic bacteria isolated from different saline environments and identified as Halomonas organivorans, Arhodomonas aquaeolei and Modicisalibacter tunisiensis were shown to be able to grow on phenol in hypersaline media containing 100 g/L of total salts at a concentration of 3 mM (280 mg/L), well above the concentration found in most waste streams. Genes encoding the aromatic dioxygenase enzymes catechol 1,2 dioxygenase and protocatechuate 3,4-dioxygenase were present in all strains as determined by PCR amplification using primers specific for highly conserved regions of the genes. The gene for protocatechuate 3,4-dioxygenase was cloned from the isolated H. organivorans and the translated protein was evaluated by comparative protein sequence analysis with protocatechuate 3,4-dioxygenase proteins from other microorganisms. Although the analysis revealed a wide range of sequence divergence among the protocatechuate 3,4-dioxygenase family, all of the conserved domain amino acid structures identified for this enzyme family are identical or conservatively substituted in the H. organivorans enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号