首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Testes, spermatogenesis and spermatozoa are described in the mite Carpoglyphus lactis (L.), the first representative of the Hemisarcoptoidea superfamily studied ultrastructurally. Paired testes are located posteriorly in the idiosoma, with germaria situated dorsolaterally. The germarium consists of a compact group of spermatogonia; no testicular central cell was found. The remainder of the gonad is occupied by germ cells in different stages of spermatogenesis, distributed separately rather than in cysts, and embedded in a few large somatic cells filling the remaining space. Spermatocytes are covered by a spongy layer, a product of the Golgi apparatus. Spermatids are anucleate. Their chromatin condenses into granular and then tubular threads. As spermiogenesis progresses, the spongy layer assembles at a single site and forms a structure termed the spongy body; mitochondria become electron dense, elongate and gather forming a bundle; a narrow ER cistern, promptly transforming into a dense lamella, appears between the mitochondria and chromatin. Mature spermatozoa are small, highly electron-dense cells interdigitating with others via superficial protrusions. They possess chromatin threads, electron-dense lamella and mitochondria, but do not have an acrosome.Our results support the monophyly of Astigmata, but do not explain the phylogenetic affinities of Hemisarcoptoidea to other superfamilies of astigmatic mites.  相似文献   

2.
To investigate migration and differentiation of neural progenitor cells (NPCs) from the ependymal layer to the nucleus ambiguus (NA) after recurrent laryngeal nerve (RLN) avulsion. All of the animals received a CM-DiI injection in the left lateral ventricle. Forty-five adult rats were subjected to a left RLN avulsion injury, and nine rats were used as controls. 5-Bromo-2-deoxyuridine (BrdU) was injected intraperitoneally. Immunohistochemical analyses were performed in the brain stems at different time points after RLN injury. After RLN avulsion, the CM-DiI+ NPCs from the ependymal layer migrated to the lesioned NA. CM-DiI+/GFAP+ astrocytes, CM-DiI+/DCX+ neuroblasts and CM-DiI+/NeuN+ neurons were observed in the migratory stream. However, the ipsilateral NA included only CM-DiI+ astrocytes, not newborn neurons. After RLN avulsion, the NPCs in the ependymal layer of the 4th ventricle or central canal attempt to restore the damaged NA. We first confirm that the migratory stream includes both neurons and glia differentiated from the NPCs. However, only differentiated astrocytes are successfully incorporated into the NA. The presence of both cell types in the migratory process may play a role in repairing RLN injuries.  相似文献   

3.
In the CNS of the Patinopecten yessoensis (Jay) two types of cells have been revealed. The I type cells are typical unipolar neurons with a developed granular endoplasmic reticulum and Golgi compex, with a nucleus containing small amount of chromatin. They possess elementary peptidergic granules. The II type cells have in their cytoplasm and processes a large amount of electron-opague granules, specific for adrenergic systems. The nucleus is rich in clustered chromatin, the granular endoplasmic reticulum is poorly developed, cytosomes are absent. According to their ultrastructural organization the latter correspond to small granular cells of the mammalian autonomic nervous system.  相似文献   

4.
Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where they differentiate into interneurons. The chains of type A cells are ensheathed by slowly proliferating astrocytes (type B cells), the second most common cell type in this germinal layer. The most actively proliferating cells in the SVZ, type C, form small clusters dispersed throughout the network. These foci of proliferating type C cells are in close proximity to chains of type A cells. We discuss possible lineage relationships among these cells and hypothesize which are the neural stem cells in the adult SVZ. In addition, we suggest that interactions between type A, B, and C cells may regulate proliferation and initial differentiation within this germinal layer. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 234–248, 1998  相似文献   

5.
Cells dissociated from brains of newborn rats and grown on plastic surfaces develop into a glial culture, composed of at least three morphologically different cell types. The predominating cell type consists of astroglial cells, which form a monolayer. The second cell type, rarely observed, consists of ependymal cells. The third type consists of small cells scattered upon the astroglial layer. After 3 weeks very few of these small cells remain and the glial culture develops into a more homogenous appearance, mainly composed of astroglial cells. The effects of various brain extracts on the development of the small cell type was investigated. The treatment by either rat or chick brain extracts caused an increase in the number of these cells, which were seen to form clusters. Brain extracts from older animals have a stronger effect than brain extracts from younger animals. These data suggest that factors contained in the brain during and after the myelination period influence the development of this cell type in dissociated cultures. The small cells were tentatively identified as oligodendroglial cells by ultrastructural and histochemical criteria. They did not contain acetylcholinesterase (AChE) and did not bind tetanus toxin. Furthermore, they did not contain glial fibrillary acidic (GFA) protein. But carbonic anhydrase II (CAII) was found in them at light and electron-microscopical level. CAII was found to be localized essentially on the plasmic membrane and on the endoplasmic reticulum of these cultured oligodendroglial cells.  相似文献   

6.
Two types of interstitial cells have been demonstrated in close association in the deep muscular plexus of rat small intestine, by electron microscopy. Cells of the first type are characterized by a fibroblastic ultrastructure, i.e. a well-developed granular endoplasmic reticulum, Golgi apparatus and absence of the basal lamina. They form a few small gap junctions with the circular muscle cells and show close contact with axon terminals containing many synaptic vesicles. They may play a role in conducting electrical signals in the muscle tissue. Cells of the second type are characterized by many large gap junctions that interconnect with each other and with the circular muscle cells. Their cytoplasm is rich in cell organells, including mitochondria, granular endoplasmic reticulum and Golgi apparatus. They show some resemblance to the smooth muscle cells and have an incomplete basal lamina, caveolae and subsurface cisterns. However, they do not contain an organized contractile apparatus, although many intermediate filaments are present in their processes. They also show close contacts with axon terminals containing synaptic vesicles. These gap-junction-rich cells may be regular components of the intestinal tract and may be involved in the pacemaking activity of intestinal movement.  相似文献   

7.
Summary The release of neuronal secretory products by exocytosis in different layers of the median eminence of the rat was investigated ultrastructurally after perfusion with Ringer solution containing tannic acid. Exocytotic images were observed in all layers studied. Neurohaemal release sites were found in the pars externa of the palisade layer, where they occurred not only against the basal lamina of the pericapillary space, but also opposite, adjacent to neuronal and glial elements. In the lateral portion of the pars externa of the palisade layer most release sites were separated from the pericapillary space or the pial surface by ependymal or glial processes. In the pars interna of the palisade layer, and in the reticular, fibre and subependymal layers, release was observed in different types of axonal processes without morphological synaptic specializations. We suggest that products released in the pars externa of the palisade layer are destined to reach the capillaries of the primary portal plexus. Although the non-vascular release sites may serve a similar hormonal function, they may alternatively represent the morphological correlate of axoaxonal contacts or of paracrine, non-synaptic release sites.  相似文献   

8.
The primary immune response toward internal parasites and other large foreign objects that enter the insect hemocoel is encapsulation. Prior studies indicated that granular cells and plasmatocytes are the two hemocyte types required for capsule formation by the moth Pseudoplusia includens (Lepidoptera: Noctuidae). Capsules formed by P. includens also have a defined architecture with primarily granular cells attaching directly to the target, multiple layers of plasmatocytes adhering to this inner layer of granular cells, and a monolayer of granular cells attaching to the capsule periphery. Dye-exclusion assays indicated that granular cells die shortly after attaching to the capsule periphery, leaving a basal lamina-like layer around the capsule. In examining the mechanisms underlying granular cell death, we found that culture medium preconditioned by plasmatocytes induced apoptosis of granular cells. Characteristics of plasmatocyte-induced apoptosis included condensation of chromatin, cell surface blebbing and fragmentation of nuclear DNA. Plasmatocyte-conditioned medium did not induce apoptosis of other hemocyte types, and medium conditioned by other hemocyte types did not induce apoptosis of granular cells. The adhesive state of granular cells and plasmatocytes also affected levels of apoptosis. Conditioned medium from spread plasmatocytes induced higher levels of granular cell apoptosis than medium conditioned by unspread plasmatocytes. Reciprocally, spread granular cells underwent significantly higher rates of apoptosis than unspread granular cells in medium conditioned by spread plasmatocytes. In situ analysis indicated that granular cells on the periphery of capsules also undergo apoptosis. Collectively, our results suggest that spread plasmatocytes release one or more factors that induce apoptosis of granular cells, and that this response is important in the final phases of capsule formation.  相似文献   

9.
Study of the esophageal microscopic morphology of adult Rana perezi by light and electron microscopy discloses some large folds throughout the esophagus that are in themselves ringed. Glandular ostia open in the furrows of the luminal surface. The esophageal wall is made up of a connective adventitia rich in melanocytes, a muscular tunica, a connective and glandular subepithelial layer, and a pseudostratified ciliated epithelium. This epithelium basically consists of ciliated, goblet, basal, microvillous-apex, and migratory cells. Two types of goblet cells are distinguished with regard to the granular ultrastructure. The microvillous-apex cell has not been found in other amphibians. It shows a very differentiated morphology with a high number of mitochondria. The basal cells give the epithelium a pseudostratified morphology, and they have a proliferative function. Glands are branched and drain through an excretory duct that has a monolayered mucosecreting epithelium. The glandular units are formed by two principal types of cells: mucosecretory and serous.  相似文献   

10.
Summary In the median eminence of the newt a medial region and two lateral regions are described.In cross section, the medial region appears to be made up of 1) an outer or glandular zone (Zone I) containing aldehyde-thionine-positive and negative nerve fibres and blood capillaries. Nerve fibres appear aligned in palisade array along the capillaries. 2) An inner zone (Zone II) made up of a) a layer of aldehyde-thionine-positive nerve fibres (fibrous layer) belonging to the preoptic hypophyseal tract and b) a layer of ependymal cells lining the infundibular lumen and reaching the blood vessels with their long processes.The lateral regions display a less pronounced stratification and aldehyde-thionine positive nerve fibres are nearly absent.A slender lamina (ependymal border) containing mainly aldehyde-thionine-positive nerve fibres and ependymal cells connects the median eminence to the pars nervosa.At the ultrastructural level, in the outer zone of the medial region at least 4 types of nerve fibres and nerve endings are identified:Type I nerve fibres containing granular vesicles of 700–1000 Å and clear vesicles (250–400 Å).Type II nerve fibres containing granular vesicles and polymorphous granules of 900–1300 Å and clear vesicles (250–400 Å).Type III nerve fibres containing dense granules of 1200–2000 Å and clear vesicles of 250–400 Å.Type IV nerve fibres containing only clear vesicles of 250–400 Å. In the inner zone too, all these nerve fiber types are found among ependymal cells, while the fibrous layer consists of nerve fibres containing granules of 1200–2000 Å in diameter.In the lateral regions Type I, Type II and Type IV nerve fibres and their respective perivascular terminals are found; axons containing dense granules (1200–2000 Å) are scanty. In these regions typical synapses between Type I nerve fibres and processes rich in microtubules are visible.The classification and functional significance of nerve fibres in the median eminence are still unsolved, but it may be assumed that nerve fibres of the medial region belong to both the preoptic hypophyseal and tubero hypophyseal tract, while the lateral regions are characterized by nerve fibres of the tubero hypophyseal tract. Peculiar specializations of the ependymal cells in the median eminence of the newt are also discussed.Work supported by a grant from the Consiglio Nazionale delle Ricerche.The authors are indebted to Mr. G. Gendusa and P. Balbi for technical assistance.  相似文献   

11.
Summary The nuclear apparatus ofRemanella granulosa has been investigated using conventional TEM methods and Bernhard's technique of preferential RNP staining. This species has two (rarely three) macronuclei and a single micronucleus (rarely two micronuclei). The nuclei always form a single group.The macronuclei contain a fibro-granular matrix resistant to EDTA destaining, and several nucleoli and chromatin bodies. The chromatin bodies are readily bleached with EDTA and are often clustered, or even fused, forming chromocenters. The nuclei are of the compact concentric type. Some macronuclei contain nuclear bodies, as finely fibrous spheres or bundles of coarse fibers, or both. Neither type of nuclear body is destained with EDTA. The spheres are frequently associated with nucleoli. There is no evidence of any transition between the two types of nuclear bodies. The macronuclear envelope contains numerous pore complexes and is strengthened with an electron dense layer. The micronucleus is filled with spongy condensed chromatin and surrounded by an envelope with occasional pores. This nucleus lacks nucleoli and nuclear bodies.  相似文献   

12.
Alexander Mitro 《Biologia》2014,69(9):1250-1254
Ependymal areas were studied in the lateral brain ventricles of the rat central nervous system and were labelled with a code. The presented suggestion using the coding for individual ependymal areas in rat ventricle may solve the significant problem in experimental studies, i.e. how to secure the mutual comparison of the same type of ependymal areas or ependymal cells. The periventricular structures represent a basic and stable part of brain nerve tissue and they are localized most closely to the studied part of the ventricle wall. For this quality they were chosen as reference nerve tissue for the labelling of the ependymal areas and they were used for the creation of the code. The code is composed from letters “Lv” (lateral ventricle) and “E” (ependymal area) followed by the abbreviation of the latin name of the periventricular structure, e.g., the corpus callosum abbreviation is “cc”. The code of the ependymal area over the corpus callosum is thus “LvE-cc”. The proposed labelling of the ependymal areas may offer several advantages, such as: (i) better characterization of ependymal areas in the future; (ii) preventing the interchange of different types of ependymal areas or ependymal cells; and (iii) avoiding a false interpretation in experiments.  相似文献   

13.
Summary The developing primary leaves of mung bean seedlings contain plastids, called proteoplasts, which are modified for protein storage. The proteoplast has a large protein inclusion with a granular matrix that is bound by a single membrane. Proteoplasts of this type are located in a layer of tissue one cell thick between the palisade and spongy mesophyll cells. The cell layer containing proteoplasts (P layer) differentiates within a few days after seed imbibition. Proteoplast precursors are distinguished by the development of membrane-bound protein sacs within the stroma. The protein sacs coalesce to form a spherical protein body. The P layer is short lived in primary leaves of seedlings grown in light and degeneration of these cells begins soon after proteoplast differentiation. As the cell layer degenerates, proteoplast contents become very electron dense. Within two days, the P layer breaks down and disappears as adjacent cells enlarge and differentiate. In contrast, this specialized cell layer remains intact, with little change in proteoplast fine structure, over a corresponding period in etiolated seedlings.  相似文献   

14.
Immune lymphocytes sorbed on the surface of the target cells were characterized during the period of the first three hours of combined incubation by the presence of the electron-dense matrix, abundance of mitochondria and lipids; small lymphocytes had disseminated ribosome organized into polysomes in the medium lymphocytes forming individual cysterns of the granular endoplasmic reticulum in the large lymphocytes, this indicating active protein synthesis by these cells. There were also revealed cells of plasmatic type. Cells incubated with the PHA for one hour represented a homogenous population of small lymphocytes of the same size as the clear cytoplasm containing free ribosomes and individual mitochondria. The proportion of the medium lymphocytes and the blasts increased with increase of the incubation period. These are cells with the clear cytoplasm freely disseminated polyribosomes in which no developed granular endoplasmic reticulum was sometimes revealed. The presence of two types of cells whose ultrastructure reflected their functional characteristics is discussed.  相似文献   

15.
The big and secondary islets of sea bass larvae were characterized ultrastructurally from, 25 to 60 days after hatching. From the 25th day, big islets consisted of inner type II and III, external type I and peripheral type IV cells. From the 55th day, type V cells appeared in limited peripheral areas. Secondary islets, first found in 32-day-old larvae, were made up of inner type II and III, external type I, and peripheral either type IV and V cells (type I islets), or only type V cells (type II islets). Type I cells contained secretory granules with a fine granular, low-medium electron-dense material, whereas the secretory granules of type II cells were smaller and had a high electron-dense core with diffused limits; needle and rod-like crystalloid contents were occasionally found. Type III secretory granules posessed a homogeneous, high or medium electron-dense material with or without a clear halo. Type IV cells had secretory granules with a polygonal dense core embedded in a granular matrix and granules containing a high or medium electron-dense material. Type V cells had secretory granules with a fine granular, high or medium electron-dense content. These cell-types correlated with cells previously identified immuno-cytochemically, as regards to their distribution in the islets, and related to those characterized ultrastructurally in adult specimens. Thus, types I, II, III, IV and V correspond to D1, B, D2, A and PP cells, respectively. From the 32nd day onwards, endocrine cells of all the different types were found grouped, type V cells also being observed in isolation close to pancreatic ducts and/or blood vessels. Small groups consisting of type I and II cells were found in 40-day-old larvae. A mitotic centroacinar ductular cell containing some secretory granules similar to those of type I cells, was seen adjacent to a type I cell. As the larvae grew older, the endoplasmic reticulum developed, the number of free ribosomes decreased, and the number and size of the secretory granules increased. Dark type I, II, III, IV and V cells were found in the islets and cell clusters from the 55th day onwards.  相似文献   

16.
Summary The expression of epidermal growth factor receptor (EGFR) was determined in cryosections of 42 human gliomas using biotinylated epidermal growth factor (B-EGF) and two monoclonal antibodies (mAb) against EGFR. All gliomas were found to express EGFR when examined with B-EGF, whereas 33 expressed EGFR when examined with the two mAbs. The highly malignant gliomas (glioblastomas and anaplastic astrocytomas) had a more heterogeneous staining pattern and a larger proportion of tumour cells staining strongly with B-EGF than did the low-grade gliomas (astrocytomas, oligodendrogliomas, mixed gliomas, and ependymomas). This indicates that high-grade gliomas contain more tumour cells rich in EGFR than do the low-grade gliomas. Reactive astrocytes, ependymal cells, and many types of nerve cells (cerebral cortical pyramidal cells, pyramidal and granular hippocampal cells, Purkinje cells, cerebellar granular cells and neurons in the molecular layer of the cerebellum) expressed EGFR, whereas small neurons and normal glial cells were not found to express EGFR.  相似文献   

17.
Toxins produced by the fungus Metarrhizium anisopliae and the bacterium Pseudomonas aeruginosa in the ecdysial space of a molting wireworm are absorbed through the thin new cuticle and ultrastructurally change the epidermal cells into two distinct types. One is a rounded, degenerative type characterized by a “light” cytoplasm with vesiculated rough endoplasmic reticulum, rounded mitochondria with degenerated cristae, little ground plasm, and a rounded nucleus with little nucleoplasm and large globules of condensed chromatin from which chromatin fibrils separate in loose folds or granulelike tight folds. The other type has very irregular outlines and is characterized by a “dark” cytoplasm with abundant, whorled laminae of rough endoplasmic reticulum and abundant free ribosomes in a dense ground plasm, large rounded clear vacuoles, and apparently normal mitochondria and nuclei. The fungal toxins are believed to be primarily responsible for the formation of the light cells, and the bacterial toxins, for the separation of the chromatin into fibrils in the light cells, the fusion of their nuclei into large nuclear bodies, and the changes in the cytoplasmic contents of the dark cells. The dark cells, although abnormal, appear to retain a limited secretory activity.  相似文献   

18.
19.
The ovary of paddlefish and sturgeons (Acipenseriformes) is composed of discrete units: the ovarian nests and ovarian follicles. The ovarian nests comprise oogonia and numerous early dictyotene oocytes surrounded by somatic prefollicular cells. Each ovarian follicle consists of a spherical oocyte and a layer of follicular cells situated on a thick basal lamina, encompassed by thecal cells. The cytoplasm of previtellogenic oocytes is differentiated into two distinct zones: the homogeneous and granular zones. The homogeneous cytoplasm is organelle-free, whereas the granular cytoplasm contains numerous organelles, including mitochondria and lipid droplets. We have analyzed the cytoplasm of early dictyotene and previtellogenic oocytes ultrastructurally and histologically. In the cytoplasm of early dictyotene oocytes, two morphologically different types of mitochondria can be distinguished: (1) with well-developed cristae and (2) with distorted and fused cristae. In previtellogenic oocytes, the mitochondria of the second type show various stages of cristae distortion; they contain and release material morphologically similar to that of lipid droplets and eventually degenerate. This process of mitochondrial transformation is accompanied by an accumulation of lipid droplets that form a single large accumulation (lipid body) located in the vicinity of the oocyte nucleus (germinal vesicle). The lipid body eventually disperses in the oocyte center. The possible participation of these mitochondria in the formation of oocyte lipid droplets is discussed. This work was supported by funds from the research grant BW/IZ/2005 to M.Ż. An erratum to this article can be found at http://dx.doi.org/. An erratum to this article can be found at  相似文献   

20.
We recorded the activity of two types of granular cells in the rostral folia of the paramedial lobe (the projection region of the front legs) of the cerebellar cortex in cats immobilized by administration of ditiline; these cells differed in their receptive fields, the characteristics of their reaction to single stimulation of somatic nerves, and the character of their background activity. The granular cells of the first type were excited only when the nerves of the front legs were stimulated (reacting with 1–3 impulses with a latent period of 8–20 msec) and were inhibited between 20–50 and 70–180 msec after stimulation of the nerves of any leg. The cells of the second type responded with volleys of 3–6 impulses with a latent period of 20–40 msec to stimulation of the nerves of all four legs. Comparison of the reactions of the granular cells and other neurons of the cerebellar cortex showed that the cells of the first type cause excitation of the Purkinje and Golgi cells and the neurons of the molecular layer. The granular cells of the second type have an excitatory effect on the Golgi cells. The differences in the reactions of the two types of granular cells result from the fact that they are selectively innervated by the mossy fibers of different afferent pathways. Comparison with the data in the literature enables us to surmise that the fibers of the cuneocerebellar tract terminate at granular cells of the first type, while the reticular fibers terminate at cells of the second type.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 167–176, September–October, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号