首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation action for species of concern requires that “designatable units” (e.g., species, subspecies, geographic races, genetically distinct forms) are clearly defined, or that the species complex is treated as a whole. Several species of bumble bee are currently threatened, and some of these have cryptic colouration (resembling other species), or form complexes that vary considerably in colour patterning. Here we address the taxonomy and distribution of Bombus occidentalis Greene and B. terricola Kirby, both of which are currently of conservation concern in North America. Bombus occidentalis includes two apparently monophyletic groups of COI barcode haplotypes (recently considered as subspecies) with ranges mostly separated by that of their sister species, B. terricola. The southern B. o. occidentalis ranges throughout the western United States and into western Canada from southern Saskatchewan and Alberta, and throughout British Columbia north to ca. 55°N; the northern B. o. mckayi Ashmead, is restricted to north of this in British Columbia, westernmost Northwest Territories, Yukon Territory and Alaska. Bombus o. mckayi exists, as far as is known, only with a “banded” colour pattern. By contrast, B. o. occidentalis occurs in both banded and non-banded colour patterns, although the southern banded colour pattern is geographically isolated from the northern subspecies. Bombus o. occidentalis has declined throughout its range, perhaps due in part to exposure to novel parasites. Despite having similar levels of parasitism (ca. 40 %) as the southern subspecies, B. o. mckayi appears to have stable populations at present. There is therefore compelling evidence that the two subspecies should be distinguished for conservation and management purposes. We present the evidence for their distinction and provide tools for subspecies recognition.  相似文献   

2.
The horned grebe (Podiceps auritus) population of the Magdalen Islands in the St. Lawrence Gulf (Québec, Canada) has declined sharply over the last decades. It is the only breeding population of this species in eastern North America with nearest breeding populations being >2500 km apart in western North America and Europe, We used three types of genetic markers: mitochondrial (mt) DNA ND2 sequence, α-enolase intron sequence, and 25 amplified fragment length polymorphism loci (AFLPs) to quantify the genetic diversity within the Magdalen Island population and to assess its genetic distinctiveness relative to populations from western Canada (five sites) and Iceland (one site). The Magdalen Island population retained a comparable amount of genetic diversity to the average diversity observed across all populations in all three markers. Horned grebe mtDNA sequences formed a monophyletic group and nearly all haplotypes present in Québec were found elsewhere. In the ND2 fragment, populations partitioned into two groups corresponding to subspecies (Iceland versus North American sites) and more strongly in three groups according to geographic disjunctions (Iceland versus Québec versus western Canada). In contrast, there was no evidence of structure between sites in the α-enolase intron. In the AFLPs, Iceland showed the greatest level of differentiation, followed by the Québec and British Columbia populations. For conservation purposes, we suggest that the Magdalen Islands population should be recognized as a separate unit.  相似文献   

3.
Changes to weather patterns under a warming climate are complex: while warmer temperatures are expected virtually worldwide, decreased mean precipitation is expected at mid-latitudes. Migratory birds depend on broad-scale weather patterns to inform timing of movements, but may be more susceptible to local weather patterns during sedentary periods. We constructed Bayesian integrated population models (IPMs) to assess whether continental or local weather effects best explained population dynamics in an environmentally sensitive aerial insectivorous bird, the tree swallow (Tachycineta bicolor), along a transcontinental gradient from British Columbia to Saskatchewan to New York, and tested whether population dynamics were synchronous among sites. Little consistency existed among sites in the demographic rates most affecting population growth rate or in correlations among rates. Juvenile apparent survival at all sites was stable over time and greatest in New York, whereas adult apparent survival was more variable among years and sites, and greatest in British Columbia and Saskatchewan. Fledging success was greatest in Saskatchewan. Local weather conditions explained significant variation in adult survival in Saskatchewan and fledging success in New York, corroborating the hypothesis that local more than continental weather drives the population dynamics of this species and, therefore, demographic synchrony measured at three sites was limited. Nonetheless, multi-population IPMs can be a powerful tool for identifying correlated population trajectories caused by synchronous demographic rates, and can pinpoint the scale at which environmental drivers are responsible for changes. We caution against applying uniform conservation actions for populations where synchrony does not occur or is not fully understood.  相似文献   

4.
Conservation geneticists have argued that evolutionarily significant units (ESUs) must be both genetically distinct and adaptively significant to be recognized for conservation protection. High-throughput DNA approaches can greatly increase the power to identify genetic distinctiveness, even if inferring adaptive significance remains a challenge. Here we present the first genomic evaluation of Lange’s metalmark, Apodemia mormo langei (Lepidoptera: Riodinidae), a U.S. federally endangered subspecies restricted to sand dune habitats in a single National Wildlife Refuge in California. Previous work based on very few genetic markers detected little genetic distinction for Lange’s metalmark. We use several thousand genome-wide single nucleotide polymorphisms to characterize the population structure of the A. mormo complex across California and determine if Lange’s metalmark qualifies as an ESU. We found that Lange’s metalmark is genetically identifiable, but is no more distinct than many other isolated populations across the study area. It remains unclear whether this genetic variation is adaptive, and so conservation efforts would benefit from more ecological characterization to determine conservation priorities.  相似文献   

5.
Population genetics has increasingly become an important tool for determining appropriate taxonomic units for managing species of conservation interest. Yelloweye rockfish (Sebastes ruberrimus), canary rockfish (S. pinniger) and bocaccio (S. paucispinis) in the inland waterways of Puget Sound (PS), WA, USA were listed under the U.S. Endangered Species Act (ESA) in 2010. These listings relied heavily on evidence from other species that these populations were ‘discrete’ taxonomic units because little information was available for these species in PS. To fill this data gap, we collaborated with recreational fishing communities in PS to collect tissue samples and used population genetics analyses to determine whether samples from PS were genetically differentiated from samples collected from the outer coasts of the U.S. and Canada. Multiple analyses using restriction-site associated DNA sequencing data showed that yelloweye rockfish in PS and British Columbia, Canada were genetically different from coastal populations, while canary rockfish showed no genetic differentiation. These results support hypotheses that the genetic connectivity of rockfish populations is based on interactions between life-history characteristics and oceanographic conditions. These data also support the ESA designation status and the expansion of protected geographical boundaries for yelloweye rockfish but also suggest canary rockfish in PS are not a ‘discrete’ population and may not meet the first criterion of the ESA, as initially assumed. Collaboration among agencies and fishing communities, and cost-efficient genetic analyses provided a framework for collecting and analyzing data essential to the conservation and management of threatened and endangered species.  相似文献   

6.
Delineation of units below the species level is critical for prioritizing conservation actions for species at‐risk. Genetic studies play an important role in characterizing patterns of population connectivity and diversity to inform the designation of conservation units, especially for populations that are geographically isolated. The northernmost range margin of Western Rattlesnakes (Crotalus oreganus) occurs in British Columbia, Canada, where it is federally classified as threatened and restricted to five geographic regions. In these areas, Western Rattlesnakes hibernate (den) communally, raising questions about connectivity within and between den complexes. At present, Western Rattlesnake conservation efforts are hindered by a complete lack of information on genetic structure and degree of isolation at multiple scales, from the den to the regional level. To fill this knowledge gap, we used Genotyping‐in‐Thousands by sequencing (GT‐seq) to genotype an optimized panel of 362 single nucleotide polymorphisms (SNPs) from individual samples (n = 461) collected across the snake's distribution in western Canada and neighboring Washington (USA). Hierarchical STRUCTURE analyses found evidence for population structure within and among the five geographic regions in BC, as well as in Washington. Within these regions, 11 genetically distinct complexes of dens were identified, with some regions having multiple complexes. No significant pattern of isolation‐by‐distance and generally low levels of migration were detected among den complexes across regions. Additionally, snakes within dens generally were more related than those among den complexes within a region, indicating limited movement. Overall, our results suggest that the single, recognized designatable unit for Western Rattlesnakes in Canada should be re‐assessed to proactively focus conservation efforts on preserving total genetic variation detected range‐wide. More broadly, our study demonstrates a novel application of GT‐seq for investigating patterns of diversity in wild populations at multiple scales to better inform conservation management.  相似文献   

7.
Aim Limited population structure is predicted for vagile, generalist species, such as the grey wolf (Canis lupus L.). Our aims were to study how genetic variability of grey wolves was distributed in an area comprising different habitats that lay within the potential dispersal range of an individual and to make inferences about the impact of ecology on population structure. Location British Columbia, Canada – which is characterized by a continuum of biogeoclimatic zones across which grey wolves are distributed – and adjacent areas in both Canada and Alaska, United States. Methods We obtained mitochondrial DNA control region sequences from grey wolves from across the province and integrated our genetic results with data on phenotype, behaviour and ecology (distance, habitat and prey composition). We also compared the genetic diversity and differentiation of British Columbia grey wolves with those of other North American wolf populations. Results We found strong genetic differentiation between adjacent populations of grey wolves from coastal and inland British Columbia. We show that the most likely factor explaining this differentiation is habitat discontinuity between the coastal and interior regions of British Columbia, as opposed to geographic distance or physical barriers to dispersal. We hypothesize that dispersing grey wolves select habitats similar to the one in which they were reared, and that this differentiation is maintained largely through behavioural mechanisms. Main conclusions The identification of strong genetic structure on a scale within the dispersing capabilities of an individual suggests that ecological factors are driving wolf differentiation in British Columbia. Coastal wolves are highly distinct and representative of a unique ecosystem, whereas inland British Columbia grey wolves are more similar to adjacent populations of wolves located in Alaska, Alberta and Northwest Territories. Given their unique ecological, morphological, behavioural and genetic characteristics, grey wolves of coastal British Columbia should be considered an Evolutionary Significant Unit (ESU) and, consequently, warrant special conservation status. If ecology can drive differentiation in a highly mobile generalist such as the grey wolf, ecology probably drives differentiation in many other species as well.  相似文献   

8.
In Flanders (northern Belgium),Primula vulgaris, a self-incompatible long-lived perennial herb, is rare and consists of a network of fragmented populations in the intensively used agricultural landscape. We investigated genetic variation and structure using 27 allozyme loci in 41 populations, and reproductive success to assess the effect of fragmentation on gene flow and the influence of the nearest neighbouring (large and/or highly genetically diverse) population on within-population genetic variation and reproductive success. Isolation by distance was found among and within populations. Smaller and more isolated populations showed a slight loss of allelic variation, but maintained high levels of observed heterozygosity. They were not more differentiated from each other than large populations. No significant difference in the regression slopes of the spatial autocorrelation analysis was found between two continuous populations and two groups of fragmented populations with similar distance classes. Multiple regression showed that population allelic richness and reproductive success were higher when the nearest neighbouring population was genetically more diverse. These results suggest moderate current gene flow within and among populations rather than historical gene flow. We conclude that small and isolated populations ofP. vulgaris should be considered not only as remnants of previously larger populations, but also as potential stepping stones insuring gene flow processes. For conservation, all highly variable and flowering populations should be considered, irrespective of their size or their isolation from large and continuous populations.  相似文献   

9.
Conservation and management of endemic species may increasingly involve efforts to prevent hybridization with other species. Native westslope cutthroat trout (Oncorhynchus clarkii lewisi) management in western North America is based largely on admixture estimates with introduced rainbow trout (O. mykiss), with the highest conservation priority given to cutthroat populations that do not exhibit admixture. This study examined the hypothesis that such ancestry quotients are dependent upon the genetic background of reference rainbow trout populations. We used 10 microsatellite loci to estimate admixture within westslope cutthroat trout collected from 39 sites from Alberta, Canada, using three genetically distinct (pairwise FST = 0.100–0.281) rainbow trout genetic backgrounds: a wild (introduced) population from Alberta, two wild (native) populations from British Columbia, and a present-day hatchery broodstock line. Ancestry quotients were significantly impacted by genetic background, whereby the extent of admixture was highest with locally introduced (wild, naturalized) rainbow trout lines and lowest with the hatchery lines. Our results suggest that future studies ought to explore the possibility that local adaptation or drift in introduced rainbow trout populations may contribute to decreased reproductive isolation with geographically proximal cutthroat trout populations.  相似文献   

10.
Many lichen species produce both sexual and asexual propagules, but, aside from being minute, these diaspores lack special adaptations for long-distance dispersal. So far, molecular studies have not directly addressed isolation and genetic differentiation of lichen populations, both being affected by gene flow, at a regional scale. We used six mycobiont-specific microsatellite loci to investigate the population genetic structure of the epiphytic lichen Lobaria pulmonaria in two regions that strongly differed with respect to anthropogenic impact. In British Columbia, L. pulmonaria grows in continuous old-growth forests, while its populations in the old cultural landscape of Switzerland are comparably small and fragmented. Populations from both British Columbia and Switzerland were genetically diverse at the loci. Geographically restricted alleles, low historical gene flow, and analyses of genetic distance (upgma tree) and of differentiation (amova) indicated that populations from Vancouver Island and from the Canadian mainland were separated from each other, except for one, geographically intermediate population. This differentiation was attributed to different glacial and postglacial histories of coastal and inland populations in British Columbia. In contrast to expectations, the three investigated Swiss populations were genetically neither isolated nor differentiated from each other despite the long-lasting negative human impact on the lichen's range size in Central Europe. We propose that detailed studies integrating local landscape and regional scales are now needed to understand the processes of dispersal and gene flow in lichens.  相似文献   

11.
Eruptive herbivores can exert profound landscape level influences. For example, the ongoing mountain pine beetle outbreak in British Columbia, Canada, has resulted in mortality of mature lodgepole pine over >7 million ha. Analysis of the spatio‐temporal pattern of spread can lend insights into the processes initiating and/or sustaining such phenomena. We present a landscape level analysis of the development of the current outbreak. Aerial survey assessments of tree mortality, projected onto discrete 12×12 km cells, were used as a proxy for insect population density. We examined whether the outbreak potentially originated from an epicenter and spread, or whether multiple localized populations erupted simultaneously at spatially disjunct locations. An aspatial cluster analysis of time series from 1990 to 2003 revealed four distinct time series patterns. Each time series demonstrated a general progression of increasing mountain pine beetle populations. Plotting the geographical locations of each temporal pattern revealed that the outbreak occurred first in an area of west‐central British Columbia, and then in an area to the east. The plot further revealed many localized infestations erupted in geographically disjunct areas, especially in the southern portion of the province. Autologistic regression analyses indicated a significant, positive association between areas where the outbreak first occurred and conservation lands. For example, the delineated area of west‐central British Columbia is comprised of three conservation parks and adjacent working forest. We further examined how population synchrony declines with distance at different population levels. Examination of the spatial dependence of temporal synchrony in population fluctuations during early, incipient years (i.e. 1990–1996) suggested that outbreaking mountain pine beetle populations are largely independent at scales >200 km during non‐epidemic periods. However, during epidemic years (i.e. 1999–2003), populations were clearly synchronous across the entire province, even at distances of up to 900 km. The epicentral pattern of population development can be used to identify and prioritize adjacent landscape units for both reactive and proactive management strategies intended to minimize mountain pine beetle impacts.  相似文献   

12.
As biodiversity continues to be lost at an alarming rate, strategies for prioritizing populations for conservation have become increasingly important. Maintaining intraspecific genetic diversity is of particular importance for preserving evolutionary history and the potential for future adaptation. In order to effectively protect this diversity, units below the species level need to be defined. However, delineation of such units is subject to many challenges, with no one strategy applying universally across taxa. In this study we carried out the first genetic assessment of the western painted turtle (Chrysemys picta bellii) at its northern periphery in British Columbia (BC), Canada, using mitochondrial DNA haplotypic and microsatellite genotypic data to examine population structure and demographic history. We compared the application of evolutionarily significant unit and management unit criteria with Canadian designatable unit guidelines to determine appropriate conservation units. Our results show that BC western painted turtles form a single evolutionarily significant unit, with each occupied site constituting a separate management unit. In contrast, there is evidence for six discrete designatable units. Patterns of genetic variation in BC western painted turtles indicate that the conservation of each region is important to maintaining regional diversity and evolutionary novelty in this widespread species.  相似文献   

13.
The population structure of 'lake‐type' and 'river‐type' sockeye salmon Oncorhynchus nerka , primarily in transboundary rivers in northern British Columbia, was examined with a survey of microsatellite variation. Variation at 14 microsatellite loci was surveyed from c . 3000 lake‐type and 3200 river‐type sockeye salmon from 47 populations in six river drainages in British Columbia. The mean F ST for the 14 microsatellite loci and 47 populations was 0·068, and 0·034 over all river‐type populations. River‐type sockeye salmon were more genetically diverse than lake‐type sockeye salmon, with expected heterozygosity of river‐type sockeye salmon 0·72 and with an average 12·7 alleles observed per locus, whereas expected heterozygosity of lake‐type sockeye salmon was 0·65 with and average 10·5 alleles observed per locus. River drainage of origin was a significant unit of population structure. There was clear evidence of genetic differentiation among river‐type populations of sockeye salmon from different drainages over a broad geographic range in British Columbia.  相似文献   

14.
Westslope cutthroat trout (Oncorhynchus clarki lewisi, Salmonidae) are native to the upper Columbia, Missouri, and South Saskatchewan river drainages of western North America and are at the northern periphery of their range in southeastern British Columbia, Canada. We examined geographical variation in allele frequencies at eight microsatellite loci in 36 samples of westslope cutthroat trout from British Columbia to assess levels of population subdivision and to test the hypothesis that different habitat types (principally mainstem vs. above migration barrier habitats) would influence levels of genetic diversity, genetic divergence among populations, and attainment of equilibrium between gene flow and genetic drift. Across all samples, the mean number of alleles per locus was 3.9 and mean expected heterozygosity was 0.56. Population subdivision was extensive with an overall Fst (theta) of 0.32. Populations sampled above migration barriers had significantly fewer alleles, lower expected heterozygosity, but greater average pairwise Fst than populations sampled from mainstem localities. We found evidence for isolation-by-distance from a significant correlation between genetic distance and geographical distance (r = 0.31), but the pattern was much stronger (r = 0.51) when above barrier populations and a population that may have been involved in headwater exchanges were removed. By contrast, isolation-by-distance was not observed when only above barrier populations were tested among themselves. Our data support the maintenance of separate demographic management strategies for westslope cutthroat trout inhabiting different river systems and illustrate how differing habitat structure (e.g. presence of migration barriers) may influence patterns of biodiversity and gene flow-drift equilibrium.  相似文献   

15.
This study characterizes population genetic structure among grey wolves (Canis lupus) in northwestern Canada, and discusses potential physical and biological determinants of this structure. Four hundred and ninety-one grey wolves, from nine regions in the Yukon, Northwest Territories and British Columbia, were genotyped using nine microsatellite loci. Results indicate that wolf gene flow is reduced significantly across the Mackenzie River, most likely due to the north-south migration patterns of the barren-ground caribou herds that flank it. Furthermore, although Banks and Victoria Island wolves are genetically similar, they are distinct from mainland wolf populations across the Amundsen Gulf. However, low-level island-mainland wolf migration may occur in conjunction with the movements of the Dolphin-Union caribou herd. Whereas previous authors have examined isolation-by-distance in wolves, this study is the first to demonstrate correlations between genetic structure of wolf populations and the presence of topographical barriers between them. Perhaps most interesting is the possibility that these barriers reflect prey specialization by wolves in different regions.  相似文献   

16.
Phylogenetic analysis of a collection of rabies viruses that currently circulate in Canadian big brown bats (Eptesicus fuscus) identified five distinct lineages which have emerged from a common ancestor that existed over 400 years ago. Four of these lineages are regionally restricted in their range while the fifth lineage, comprising two‐thirds of all specimens, has emerged in recent times and exhibits a recent demographic expansion with rapid spread across the Canadian range of its host. Four of these viral lineages are shown to circulate in the US. To explore the role of the big brown bat host in dissemination of these viral variants, the population structure of this species was explored using both mitochondrial DNA and nuclear microsatellite markers. These data suggest the existence of three subpopulations distributed in British Columbia, mid‐western Canada (Alberta and Saskatchewan) and eastern Canada (Quebec and Ontario), respectively. We suggest that these three bat subpopulations may differ by their level of female phylopatry, which in turn affects the spread of rabies viruses. We discuss how this bat population structure has affected the historical spread of rabies virus variants across the country and the potential impact of these events on public health concerns regarding rabies.  相似文献   

17.
Bighorn sheep (Ovis canadensis) populations in the western United States have undergone widespread declines and extirpations since the late nineteenth century as a consequence of introduced diseases, competition with livestock, and unregulated hunting. Washington, Idaho, USA, and British Columbia, Canada were historically thought to be occupied by 2 bighorn lineages or subspecies: Rocky Mountain (O. c. canadensis) and California (O. c. californiana). The putative California lineage was completely extirpated in the United States, and reintroductions to reestablish populations were sourced directly or indirectly from a single region in southern British Columbia. Restoration efforts have attempted to maintain the diversity and divergence of these 2 lineages, sometimes referred to as subspecies although taxonomic classifications have changed over time. In this study we describe genetic variation in a subset of native and reintroduced herds of California and Rocky Mountain bighorn sheep. We examined genetic diversity and divergence between bighorn sheep herds using 15 microsatellite loci, including 4 loci linked to genes involved in immune function. We analyzed 504 samples from reintroduced herds in Washington (n = 10 California herds, n = 4 Rocky Mountain herds) and Idaho (n = 5 California), and source herds in Oregon (n = 1 Rocky Mountain) and British Columbia (n = 5 California, 1 Rocky Mountain). Genetic structure reflected known reintroduction history, and geographic proximity also was associated with decreased genetic divergence. Herds in Washington and Idaho sourced from California bighorn sheep were less genetically diverse than those sourced from Rocky Mountain herds. Also, levels of relatedness within and across California herds were higher than in Rocky Mountain herds and similar to what would be expected for full and half siblings. Lower diversity and higher relatedness among California herds is a concern for long-term fitness and likely related to past population bottlenecks, fewer source populations, and management history, such as entirely sourcing California herds from British Columbia. Genetic divergence of neutral loci between California and Rocky Mountain herds was greater than that of adaptive loci, potentially indicating that balancing selection has maintained similar genetic diversity across lineages in loci associated with immune and other adaptive functions. Thus, we recommend future reintroductions and augmentations should continue to use source populations from the appropriate California or Rocky Mountain lineage to avoid potential outbreeding depression and maintain possible adaptive differences. This could be accomplished by obtaining sheep from ≥1 source within the genetic lineage, while avoiding sourcing from admixed herds. Future work encompassing a broader geographic sampling of populations and a greater portion of the genome is necessary to better evaluate the degree to which contemporary divergence between lineages is associated with recent founder effects and genetic isolation or evolutionary adaptation. © 2021 The Wildlife Society  相似文献   

18.
Genetic analyses are an important contribution to wildlife reintroductions, particularly in the modern context of extirpations and ecological destruction. To address the complex historical ecology of the sea otter (Enhydra lutris) and its failed 1970s reintroduction to coastal Oregon, we compared mitochondrial genomes of pre-extirpation Oregon sea otters to extant and historical populations across the range. We sequenced, to our knowledge, the first complete ancient mitogenomes from archaeological Oregon sea otter dentine and historical sea otter dental calculus. Archaeological Oregon sea otters (n = 20) represent 10 haplotypes, which cluster with haplotypes from Alaska, Washington and British Columbia, and exhibit a clear division from California haplotypes. Our results suggest that extant northern populations are appropriate for future reintroduction efforts. This project demonstrates the feasibility of mitogenome capture and sequencing from non-human dental calculus and the diverse applications of ancient DNA analyses to pressing ecological and conservation topics and the management of at-risk/extirpated species.  相似文献   

19.
Ron W. Summers 《Ostrich》2013,84(2):167-173
Summers, R. W. 1994. The migration patterns of the Purple Sandpiper Calidris maritima. Ostrich 65: 167–173.

The Purple Sandpiper breeds largely in the Arctic, and winters (boreal season) on the rocky shores of the north Atlantic, further north than any other sandpiper. As the populations from Canada, Greenland, Iceland, Svalbard, Norway and Russia differ in wing and bill lengths it is possible to match measurements taken from breeding birds with samples of birds caught in winter. Ringing recoveries, especially from colour marked birds, have also helped to determine migration routes and wintering areas. Four populations move to the nearest ice-free coast. Two populations move south of the nearest ice-free coast, being replaced by larger birds from a more northerly population (“chain migration”). Only the north Canadian population is believed to migrate a long distance, “leap-frogging” other winter populations. These patterns are discussed in relation to theories for the migration patterns of waders.  相似文献   

20.
Hybridization with introduced taxa is one of the major threats to the persistence of native biodiversity. The westslope cutthroat trout (Oncorhynchus clarkii lewisi) is found in southeastern British Columbia and southwestern Alberta, Canada, and adjacent areas of Montana, Idaho, and Washington State, USA. Through much of this area, native populations are threatened by hybridization with introduced rainbow trout (O. mykiss). We surveyed 159 samples comprising over 5,000 fish at 10 microsatellite DNA loci to assess the level of admixture between native westslope cutthroat trout (wsct) and introduced rainbow trout in southwestern Alberta. Admixture levels (qwsct of 0 = pure rainbow trout, qwsct of 1.0 = pure westslope cutthroat trout) ranged from <0.01 to 0.99 and averaged from 0.72 to 0.99 across seven drainage areas. Regression tree analyses indicated that water temperature, elevation, distance to the nearest stocking site, and distance to the nearest railway line were significant components of a model that explained 34 % of the variation across sites in qwsct across 58 localities for which habitat variables were available. Partial dependence plots indicated that admixture with rainbow trout increased with increasing water temperature and distance to the nearest railway line, but decreased with increasing elevation and distance from stocking site to sample site. Our results support the hypothesis that westslope cutthroat trout may be less susceptible to hybridization with rainbow trout in colder, higher elevation streams, and illustrate the interaction between abiotic and anthropogenic factors in influencing hybridization between native and introduced taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号