首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to Wolff’s law, the changes in stress after a prosthesis implantation may modify the shape and internal structure of bone, thus compromising the long-term prosthesis fixation and, consequently, be a significant factor for glenoid loosening. The aim of the present study is to evaluate the changes in the bone adaptation process of the scapula after an anatomical and reverse total shoulder arthroplasty. Five finite element models of the implanted scapula are developed considering the implantation of three anatomical, cemented, all-polyethylene components; an anatomical, cementless, metal-backed component; and a reverse, all-metal component. The methodology followed to simulate the bone adaptation of the scapula was previously validated for the intact model, prior to the prosthesis implantation. Additionally, the influence of the bone quality on the adaptation process is also investigated by considering an osteoporotic condition. The results show that the stress shielding phenomenon is more concerning in cementless, metal-based components than in cemented, all-polyethylene components, regardless of the bone quality. Consequently, as far as the bone adaptation process of the bone is concerned, cemented, all-polyethylene components are better suited for the treatment of the shoulder joint.  相似文献   

2.
Pelvic stresses in vitro--I. Malsizing of endoprostheses   总被引:2,自引:0,他引:2  
Seven embalmed human cadaveric hemi-pelves have been stripped of all soft tissues except the articular cartilage and instrumented with 25 strain-gauge rosettes on both the medial and lateral surfaces. Loads up to 2.5 kN were applied, without simulated muscle forces, to mimic the line-of-action of the resultant joint-force in a single-legged stance. In this parametric study, endoprostheses were studied at the 'correct' size and in sizes of 1 and 2 mm above and below the correct size. The correct size of endoprosthesis produced similar periacetabular stress data to those obtained with the normal femoral head; however, significant changes in stress on the medial and lateral aspects of the ilium suggested the correctly-sized spherical endoprosthesis had a different moment arm than its anatomical counterpart. Endoprostheses of 1 mm greater than the correct size caused major increases in the magnitude of both periacetabular and medial-wall stresses, while prostheses of +2 mm created dramatic and significant increases in magnitudes of these stresses. Endoprostheses smaller than the correct size caused only small but significant changes in the pattern of stresses up to -2 mm malsizing and, in particular, were associated with the disappearance of all periacetabular tensile stresses; however, stress data on the medial and lateral aspects of the ilium were more closely matched to the 'normal' for this -2 mm of undersizing.  相似文献   

3.
Studies have shown that animals, including humans, use the geometric properties of environments to orient. It has been proposed that orientation is accomplished primarily by encoding the principal axes (i.e., global geometry) of an environment. However, recent research has shown that animals use local information such as wall length and corner angles as well as local shape parameters (i.e., medial axes) to orient. The goal of the current study was to determine whether adult humans reorient according to global geometry based on principal axes or whether reliance is on local geometry such as wall length and sense information or medial axes. Using a virtual environment task, participants were trained to select a response box located at one of two geometrically identical corners within a featureless rectangular-shaped environment. Participants were subsequently tested in a transformed L-shaped environment that allowed for a dissociation of strategies based on principal axes, medial axes and local geometry. Results showed that participants relied primarily on a medial axes strategy to reorient in the L-shaped test environment. Importantly, the search behaviour of participants could not be explained by a principal axes-based strategy.  相似文献   

4.
Authors performed SEM and EDS analyses in a cemented removed knee prosthesis demonstrating the average values of mineral elements in the bone surrounding the prosthesis. The composition of the metallic prosthesis surface in different microareas was also studied.  相似文献   

5.
Theoretical concerns about the use of cemented or press-fit stems in revision total knee arthroplasty (TKA) include stress shielding with adverse effects on prosthesis fixation. Revision TKA components are commonly stemmed to protect the limited autogenous bone stock remaining. Revision procedures with the use of stems can place abnormal stresses through even normal bone by their constrained design, type of materials and fixation method and may contribute for bone loss. Experimental quantification of strain shielding in the proximal synthetic tibia following TKA is the main purpose of the present study. In this study, cortical bone strains were measured experimentally with tri-axial strain gauges in synthetic tibias before and after in vitro knee surgery. Three tibias were implanted with cemented and press-fit stem augments and solely with a tibial tray (short monobloc stem) of the P.F.C. Sigma Modular Knee System. The difference between principal strains of the implanted and the intact tibia was calculated for each strain gauge position. The results demonstrated a pronounced strain-shielding effect in the proximal level, close to tibial tray with the cemented stem augment. The press-fit stem presented a minor effect of strain shielding but was more extensively throughout the stem. An increase of strains closely to the distal tip of the cemented and the press-fit stem augment was observed. This suggests for a physiological condition, a potential effect of bone resorption at the proximal region for the cemented stem augment. The localized increase of strains in stems tip can be related with the clinical finding of the pain, at the end of stem after revision TKA.  相似文献   

6.
Subchondral stiffening is a hallmark pathologic feature of osteoarthritis but its mechanical and temporal relationship to the initiation or the progression of osteoarthritis is not established. The mechanical effect of subchondral stiffening on the surrounding trabecular bone is poorly understood. This study employs a relatively new application of digital image correlation to measure strain in the trabecular region of the proximal medial tibia in normal specimens and in specimens with simulated subchondral bone stiffening. Coronal sections from eight normal human cadaveric proximal tibiae were loaded in static compression and high resolution contact radiographs were made. Repeat contact radiographs were collected after the subchondral bone near the jointline was stiffened using polymethylmethacrylate. Digital images, made from loaded and unloaded contact radiographs, were compared using in-house software to measure trabecular displacement and calculate trabecular bone strain. Overall strain was higher in the stiffened specimens suggesting experimental artifiact significantly affected our results. Consistent increases in median maximum shear strain, median maximum principal strain, median minimum principal strain, and peak shear strain were measured near the inner and outer edges of the stiffened segment. Our experiment provides direct experimental measurement of increases in trabecular bone strain caused by subchondral stiffening, however, the clinical and biologic importance of strain increases is unknown.  相似文献   

7.
In the past few years there has been a considerable interest in the role of bone in osteoarthritis. Despite the increasing evidence of the involvement of bone in osteoarthritis, it remains very difficult to attribute the cause or effect of changes in subchondral bone to the process of osteoarthritis. Although osteoarthritis in mice provides a useful model to study changes in the subchondral bone, detailed quantification of these changes is lacking. Therefore, the goal of this study was to quantify subchondral bone changes in a murine osteoarthritis model by use of micro-computed tomography (micro-CT). We induced osteoarthritis-like characteristics in the knee joints of mice using collagenase injections, and after four weeks we calculated various 3D morphometric parameters in the epiphysis of the proximal tibia. The collagenase injections caused cartilage damage, visible in histological sections, particularly on the medial tibial plateau. Micro-CT analysis revealed that the thickness of the subchondral bone plate was decreased both at the lateral and the medial side. The trabecular compartment demonstrated a small but significant reduction in bone volume fraction compared to the contralateral control joints. Trabeculae in the collagenase-injected joints were thinner but their shape remained rod-like. Furthermore, the connectivity between trabeculae was reduced and the trabecular spacing was increased. In conclusion, four weeks after induction of osteoarthritis in the murine knee subtle but significant changes in subchondral bone architecture could be detected and quantified in 3D with micro-CT analysis.  相似文献   

8.
Conservative treatment of thyrotoxic exophthalmos has not given satisfactory results. Our observations, modifications of the standard surgical technique, and the results of orbital decompression for this condition are presented. Through a transverse incision close to the lower eyelid margin, the floor and the lateral orbital wall are explored. The posterior part of the orbital floor and the zygomatic part of the lateral orbital wall, as well as the periorbital fat, are removed. Through an incision made over the medial margin of the orbit, the medial orbital wall is explored and its ethmoidal part is removed. By the same approach, further retrobulbar fat is removed. Through an upper eyelid incision, fat is removed from the eyelid region and the levator aponeurosis is divided. This produces satisfactory symmetrical decompression of the orbit with good correction of exophthalmos and a significant decrease in the signs and symptoms of this condition.  相似文献   

9.
Periacetabular bone metastases cause severe pain and functional disability in cancer patients. Percutaneous acetabuloplasty (PCA) is a minimally invasive, image-guided procedure whereby cement is injected into lesion sites. Pain relief and functional restoration have been observed clinically; however, neither the biomechanical consequences of the lesions nor the effectiveness of the PCA technique are well understood. The objective of this study was to investigate how periacetabular lesion size, cortex involvement, and cement modulus affect pelvic bone stresses and strains under single-legged stance loading. Experiments were performed on a male cadaver pelvis under conditions of intact, periacetabular defect, and cement-filling with surface strains recorded at three strain gage locations. The experimental data were then employed to validate three-dimensional finite element models of the same pelvis, developed using computed tomography data. The models demonstrated that increases in cortical stresses were highest along the posterior column of the acetabulum, adjacent to the defect. Cortical stresses were more profoundly affected in the presence of transcortical defects, as compared to those involving only trabecular bone. Cement filling with a modulus of 2.2 GPa was shown to restore cortical stresses to near intact values, while a decrease in cement modulus due to inclusion of BaSO(4) reduced the restorative effect. Peak acetabular contact pressures increased less than 15% for all simulated defect conditions; however, the contact stresses were reduced to levels below intact in the presence of either cement filling. These results suggest that periacetabular defects may increase the vulnerability of the pelvis to fracture depending on size and cortical involvement and that PCA filling may lower the risk of periacetabular fractures.  相似文献   

10.
A three-dimensional non-linear finite element analysis of a cemented femoral component in which the component was partially debonded from the cement mantle was used to assess the effects of debonding on stresses in the cement. Three cases of partial cement-metal debonding were modelled with debonding of the proximal portion of the implant down to a horizontal plane which was 35, 62.5, or 82.5 mm below the prosthesis collar. Each situation was studied under loads simulating both gait and stairclimbing. Also, complete debonding between the implant and the surrounding cement mantle was modeled for loads simulating gait. Under stair climbing loads with partial cement-mental debonding, hoop stresses of 13-18 MPa were observed in the cement at the cement-metal interface at the proximal postero-medial corner of the implant. Similarly, in stair climbing, the maximum principal stresses in the cement were also adjacent to the proximal postero-medial region of the implant. These stresses were compressive and increased from 15 MPa with fully bonded interfaces to 48 MPa with debonding down to 82.5 mm below the prosthesis collar. Under gait loads, complete debonding caused high compressive stresses up to 34.9 MPa in the cement distal to the prosthesis tip. Thus, cement failure subsequent to prosthesis debonding is likely in the proximal region in a partially debonded implant due to stair climbing loads and is likely below the prosthesis tip in a fully debonded implant due to gait loading.  相似文献   

11.
  The bean bug, Riptortus clavatus shows a long-day photoperiodic response with respect to the control of adult diapause. The location of photoreceptors for photoperiodism was examined in this species by complete or partial removal of photoreceptor organs. Even after one compound eye or both ocelli were removed, the insects were sensitive to photoperiod. After both compound eyes were removed, however, the insects became reproductive regardless of the photoperiod. Therefore, photoreceptors for photoperiodism were not in the ocelli but in the compound eyes. To clarify whether ommatidia in compound eyes have a regional difference in reception of photoperiod, sensitivity to photoperiod was examined after one compound eye and a part of the contralateral one were removed. Only when the central region of compound eyes was removed did the insects lose sensitivity to photoperiod. It is concluded that the ommatidia in the central region of compound eyes play a principal role in the reception of photoperiod. Accepted: 23 September 1996  相似文献   

12.
We analyze patterns of subchondral bone apparent density in the distal femur of extant primates to reconstruct differences in knee posture, discriminate among extant species with different locomotor preferences, and investigate the knee postures used by subfossil lemur species Hadropithecus stenognathus and Pachylemur insignis. We obtained computed tomographic scans for 164 femora belonging to 39 primate species. We grouped species by locomotor preference into knuckle-walking, arboreal quadruped, terrestrial quadruped, quadrupedal leaper, suspensory and vertical clinging, and leaping categories. We reconstructed knee posture using an experimentally validated procedure of determining the anterior extent of the region of maximal subchondral bone apparent density on a median slice through the medial femoral condyle. We compared subchondral apparent density magnitudes between subfossil and extant specimens to ensure that fossils did not display substantial mineralization or degradation. Subfossil and extant specimens were found to have similar magnitudes of subchondral apparent density, thereby permitting comparisons of the density patterns. We observed significant differences in the position of maximum subchondral apparent density between leaping and nonleaping extant primates, with leaping primates appearing to use much more flexed knee postures than nonleaping species. The anterior placement of the regions of maximum subchondral bone apparent density in the subfossil specimens of Hadropithecus and Pachylemur suggests that both species differed from leaping primates and included in their broad range of knee postures rather extended postures. For Hadropithecus, this result is consistent with other evidence for terrestrial locomotion. Pachylemur, reconstructed on the basis of other evidence as a committed arboreal quadruped, likely employed extended knee postures in other activities such as hindlimb suspension, in addition to occasional terrestrial locomotion.  相似文献   

13.
As posttraumatic osteoarthritis (OA) progresses, the mechanical and morphometrical properties of the subchondral bone change and may be linked to damage of the articular cartilage. Potentially to slow that progression, doxycycline was administered orally twice daily (4 mg.kg(-1).day(-1)) in skeletally mature canines after anterior cruciate ligament transection (ACLX). To test if doxycycline significantly altered the structure and function of OA bone, we tested cancellous bone mechanical properties, measured bone mineral content, and analyzed bone structure by microcomputed tomography. Our investigation focused on subchondral trabecular bone changes in the medial femoral condyle at 36 and 72 wk after ACLX. Significant mechanical changes discovered at 36 wk post-ACLX were less obvious at 72 wk in both treated and ACLX groups. Doxycycline treatment conserved bone strain energy density at 72 wk. Doxycycline had little effect on the degradation of superficial osseous tissue at 36 wk post-ACLX; by 72 wk, doxycycline in an ACLX model limited subchondral bone loss within the first 3 mm of periarticular bone with established OA. Significant bone loss occurred in the deeper trabecular bone for all groups. Substantial architectural adaptation within deeper trabecular bone accompanied changes in mechanics in early and established OA.  相似文献   

14.
Trilucent soybean oil-filled breast implants were initially announced as the ultimate prostheses for breast augmentation. However, after an increasing number of reports of local complications and hazardous metabolites attributable to lipid oxidation, first the United Kingdom Medical Devices Agency and later the Belgian National Ministry of Health urged all plastic surgeons to contact their patients and advise them to have the implants removed and, if desired, replaced with another type of prosthesis. In our plastic surgery department, 13 patients received bilateral implants with triglyceride-filled prostheses between February and July of 1996, for primary breast augmentation or replacement of previously implanted prostheses. For 12 of those 13 patients, the prostheses have been explanted, because of unilateral breast enlargement attributable to a ruptured prosthesis for five patients and following the recommendation of the Belgian National Ministry of Health for the other seven patients. Before explantation, all patients underwent standard clinical examinations, with assessments of breast shape, volume, and firmness. Blood analyses were performed, with a special focus on liver enzymes, as were urinalyses. Magnetic resonance imaging scans were obtained before explantation; for two patients, the scans revealed a fluid level separating two liquid layers in an intact prosthesis. This is the first report of such a finding. The removed implants were examined for any damage or shell deterioration and for changes in color and viscosity, the weights and volumes were measured and compared with the initial values for the implanted prostheses, and complete biochemical analyses of the accumulated fluid in cases of ruptured prostheses and of the filler material in cases of intact prostheses were performed. This small but well-documented series illustrates the multitude of problems associated with triglyceride-filled implants, including bleeding of the triglyceride filler; shell deterioration, as indicated by a loss of texture and extreme fragility of the implant (with rupture or delamination with a simple finger touch); an increase in osmotic pressure exerted by the degraded filler material; progressive weakening of the outer silicone shell, with influx of plasma proteins of up to 750 kDa, eventually resulting in rupture of the prosthesis; a lack of oxidative stability and the formation of toxic oxidation products; a lack of biocompatibility, with the formation of insoluble organic soap-like material; and a pronounced inflammatory reaction. It is concluded that the sequential and/or simultaneous occurrence of (1) implant bleeding, (2) lipid infiltration of the silicone elastomer, and (3) inflammation attributable to oxidation products provides an overall explanation or unifying hypothesis for the wide variety of adverse events related to soybean oil-filled implants.  相似文献   

15.
The purpose of this study was to measure the effect of bone-patellar tendon-bone autograft harvest for anterior cruciate ligament (ACL) reconstruction on the surface strain of the human patella. Through progressive removal of bone from the patella, three different defect shapes as well as the intact patella were tested in each of seven knees. Maximum principal strain and corresponding principal direction were determined from each of three gages around the defect for the four conditions (intact plus three defect shapes). There were no statistically significant differences in overall average surface strain between any of the defect shapes. Following graft harvest, overall average strain (all three defects combined) increased in the patella both medial (15 percent increase) and lateral (34 percent increase) to the defect, while decreasing in the region directly proximal (22 percent decrease) to the harvest site compared to the intact patella. A statistically significant 7.5 deg shift of principal direction from longitudinal toward a more transverse (lateral-superior to medial-inferior) direction was observed in the medial region when a shallow-dome defect was made. We conclude that removal of a bone block from the anterior, inferior part of the patella induces a significant redistribution of the surface strain. This results in greater local strain adjacent to the upper border of the bone block increasing the risk for patella fracture. This effect may be of importance in various complications known to occur after ACL reconstruction.  相似文献   

16.
Y S Yoon  G H Jang  Y Y Kim 《Journal of biomechanics》1989,22(11-12):1279-1284
An optimal shape of the metal stem of a cemented total hip prosthesis minimizing stress concentration in the cement layer was searched for. A gradient projection method of numerical optimization and a finite element method of stress analysis were employed. A two-dimensional model of the femoral part of a total hip prosthesis was derived equivalent to a simplified three-dimensional axisymmetric model. The result of the stress analysis of the two-dimensional model compared favorably with that of the three-dimensional axisymmetric model. Using this two-dimensional model, an optimal shape of the stem, minimizing stress concentration in the cement layer, was obtained by a gradient projection method and the shape was checked again by the three-dimensional finite element analysis. The resulting optimal shape of the stem profile was in good agreement with conventional ones, except in the proximal region where a significant amount of stress reduction in the cement layer was achieved by tapering the stem to the limit that the stem still could withstand the increased stem stress.  相似文献   

17.
Summary The postnatal maturation of regions of the epididymis and intragonadal segment of the deferens duct was studied in the rat by light-and transmission electron microscopy. Maturation of the genital duct starts in the distal cauda epididymidis and ductus deferens after one week of life, and one week later, in the more cranial segments of the epididymis. Epithelial principal cells and peritubular contractile cells are structurally mature 35 days after birth. The synchronous changes of these cells indicate that the same factors control their postnatal maturation. The epithelial principal cells obtain an endocytotic apparatus and long stereocilia, whereas peritubular cells acquire contractile features. These changes are associated with a progressive increase in the immunoreaction for smooth muscle actin in both cell types. Smooth muscle myosin is detected in the apical region of the epithelial cells and the peritubular cell cytoplasm by day one of postnatal development. The differentiation of contractile cells in the wall is accompanied by progressive organization of the pericellular matrix into a continuous basement membrane. Although fibronectin is visible at birth, it is gradually removed from the tubule wall.  相似文献   

18.
The hydraulic conductivity (Lp) of the parietal pleura was measured in vivo in spontaneously breathing anesthetized dogs in either the supine (n = 8) or the prone (n = 7) position and in an excised portion of the chest wall in which the pleura and its adjacent tissue were intact (n = 3). A capsule was glued to the exposed parietal pleura after the intercostal muscles were removed. The capsule was filled with either autologous plasma or isotonic saline. Transpleural fluid flow (V) was measured at several transpleural hydrostatic pressures (delta P) from the rate of meniscus movement within a graduated pipette connected to the capsule. Delta P was defined as the measured difference between capsule and pleural liquid pressures. The Lp of the parietal pleura was calculated from the slope of the line relating V to delta P by use of linear regression analysis. Lp in vivo averaged 1.36 X 10(-3) +/- 0.45 X 10(-3) (SD) ml.h-1.cmH2O-1.cm-2, regardless of whether the capsule was filled with plasma or saline and irrespective of body position. This value was not significantly different from that measured in the excised chest wall preparation (1.43 X 10(-3) +/- 1.1 X 10(-3) ml.h-1.cmH2O-1.cm-2). The parietal pleura offers little resistance to transpleural protein movement, because there was no observed difference between plasma and saline. We conclude that because the Lp for intact parietal pleura and extrapleural interstitium is approximately 100 times smaller than that previously measured in isolated stripped pleural preparations, removal of parietal pleural results in a damaged preparation.  相似文献   

19.
Abstract. Close-up video was used to record responses of the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae) to the plant-derived repellent polygodial. When 0.1% (±)-polygodial was painted onto one half of a Chinese cabbage leaf disc, and the other half treated with the ethanol solvent, apterous adult aphids avoided walking onto the polygodial-treated area during 15 min access periods. Similarly, when the rim of a small plastic Petri dish was treated with polygodial, aphids took significantly longer to walk off the base of the dish and onto the rim, compared with insects in solvent-treated control dishes. Analysis of video-recordings indicated that aphids were repelled following contact of antennal tips with the polygodial-treated areas of leaf or plastic. In contrast, aphids with both antennal tips surgically removed showed no apparent response to polygodial treatment of leaf or plastic surfaces. Aphids were placed between polygodial- and solvent-treated angled glass cover slips to enable unilateral presentation of polygodial on either the left or right side of the insects. Most aphids with antennae intact moved away from the polygodial-treated side, but removal of both antennal tips again negated the response. When the tip was removed from only one antenna, and the other remained intact, unilateral presentation caused a repellent response only if polygodial occurred on the same side as the intact antenna. Presentation of polygodial on both sides of aphids (bilaterally) caused no response if both antennal tips were intact or removed, but aphids with only one antennal tip removed were repelled from the side where the antenna remained intact. The results indicate that aphids detect polygodial upon contact with sensilla located on the antennal tips, and that the repellent response occurs as a negative chemotropotaxis following unilateral stimulation of these sensilla. Contact between the antennal tips and glass substrates was demonstrated using a fluorescent pigment.  相似文献   

20.
Location of Sulfate-binding Protein in Salmonella typhimurium   总被引:17,自引:6,他引:11  
A method is described for location of proteins in bacteria. It depends upon two techniques. One technique is the inactivation of the protein by a reagent which is incapable of penetrating the bacterial membrane (permeability barrier). Proteins inside this membrane cannot be inactivated unless the cells are disrupted; proteins on or outside the membrane can be inactivated. The second technique depends upon inactivation of the protein by specific antibody. Antibody should not penetrate the external bacterial wall, and therefore should only inactivate proteins that are on the wall surface. Thus, proteins can be localized inside the membrane, in the wall-membrane area, or outside the wall. One reagent developed for use with the first technique is diazo-7-amino-1,3-naphthalene-disulfonate. It inactivated beta-galactoside transport, but not beta-galactosidase of intact Escherichia coli. Similarly, it inactivated sulfate binding and transport but not uridine phosphorylase activity of Salmonella typhimurium. This indicates that the sulfate-binding protein is on or outside the cell membrane, and that uridine phosphorylase is inside the cell. The organic mercurial compounds used also showed that the sensitive parts of the sulfate and alpha-methylglucoside transport systems are less reactive than the sensitive part of the beta-galactoside system. Antibody to the sulfate-binding protein inactivated the purified protein but did not inactivate this protein when intact bacteria were employed. Thus, it appears that the sulfate-binding protein does not protrude outside the cell wall. The conclusion that the binding protein is located in the wall-membrane region is supported by its release upon spheroplast formation or osmotic shock, and also by its ability to combine with sulfate in bacteria which cannot transport sulfate into the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号