首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In fever, as in normal thermoregulation, signals from the preoptic area drive both cutaneous vasoconstriction and thermogenesis by brown adipose tissue (BAT). Both of these responses are mediated by sympathetic nerves whose premotor neurons are located in the medullary raphé. EP3 receptors, key prostaglandin E2 (PGE2) receptors responsible for fever induction, are expressed in this same medullary raphé region. To investigate whether PGE2 in the medullary raphé might contribute to the febrile response, we tested whether direct injections of PGE2 into the medullary raphé could drive sympathetic nerve activity (SNA) to BAT and cutaneous (tail) vessels in anesthetized rats. Microinjections of glutamate (50 mM, 60-180 nl) into the medullary raphé activated both tail and BAT SNA, as did cooling the trunk skin. PGE2 injections (150-500 ng in 300-1,000 nl) into the medullary raphé had no effect on tail SNA, BAT SNA, body temperature, or heart rate. By contrast, 150 ng PGE2 injected into the preoptic area caused large increases in both tail and BAT SNA (+60 +/- 17 spikes/15 s and 1,591 +/- 150% of control, respectively), increased body temperature (+1.8 +/- 0.2 degrees C), blood pressure (+17 +/- 2 mmHg), and heart rate (+124 +/- 19 beats/min). These results suggest that despite expression of EP3 receptors, neurons in the medullary raphé are unable to drive febrile responses of tail and BAT SNA independently of the preoptic area. Rather, they appear merely to transmit signals for heat production and heat conservation originating from the preoptic area.  相似文献   

2.
Activation of 5-HT1A receptors in the medullary raphé decreases sympathetically mediated brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction when previously activated with leptin, LPS, prostaglandins, or cooling. It is not known whether shivering is also modulated by medullary raphé 5-HT1A receptors. We previously showed in conscious piglets that activation of 5-HT1A receptors with (+/-)-8-hydroxy-2-(dipropylamino)-tetralin (8-OH-DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the raphé that contains substantial numbers of 5-HT neurons, eliminates rapid eye movement (REM) sleep and decreases shivering in a cold environment, but does not attenuate peripheral vasoconstriction. Hoffman JM, Brown JW, Sirlin EA, Benoit AM, Gill WH, Harris MB, Darnall RA. Am J Physiol Regul Integr Comp Physiol 293: R518-R527, 2007. We hypothesized that, during cooling, activation of 5-HT1A receptors in the medullary raphé would also eliminate REM sleep and, in contrast to activation of 5-HT1A receptors in the PGCL, would attenuate both shivering and peripheral vasoconstriction. In a continuously cool environment, dialysis of 8-OH-DPAT into the medullary raphé resulted in alternating brief periods of non-REM sleep and wakefulness and eliminated REM sleep, as observed when 8-OH-DPAT is dialyzed into the PGCL. Moreover, both shivering and peripheral vasoconstriction were significantly attenuated after 8-OH-DPAT dialysis into the medullary raphé. The effects of 8-OH-DPAT were prevented after dialysis of the selective 5-HT1A receptor antagonist WAY-100635. We conclude that, during cooling, exogenous activation of 5-HT1A receptors in the medullary raphé decreases both shivering and peripheral vasoconstriction. Our data are consistent with the hypothesis that neurons expressing 5-HT1A receptors in the medullary raphé facilitate spinal motor circuits involved in shivering, as well as sympathetic stimulation of other thermoregulatory effector mechanisms.  相似文献   

3.
The dorsomedial hypothalamic nucleus (DMH) is believed to play a key role in mediating vasomotor and cardiac responses evoked by an acute stress. Inhibition of neurons in the rostral ventrolateral medulla (RVLM) greatly reduces the increase in renal sympathetic nerve activity (RSNA) evoked by activation of the DMH, indicating that RVLM neurons mediate, at least in part, the vasomotor component of the DMH-evoked response. In this study, the first aim was to determine whether neurons in the medullary raphe pallidus (RP) region also contribute to the DMH-evoked vasomotor response, because it has been shown that the DMH-evoked tachycardia is mediated by the RP region. The second aim was to directly assess the effect of DMH activation on the firing rate of RVLM sympathetic premotor neurons. In urethane-anesthetized rats, injection of the GABA(A) receptor agonist muscimol (but not vehicle solution) in the RP region caused a modest ( approximately 25%) but significant reduction in the increase in RSNA evoked by DMH disinhibition (by microinjection of bicuculline). In other experiments, disinhibition of the DMH resulted in a powerful excitation (increase in firing rate of approximately 400%) of 5 out of 6 spinally projecting barosensitive neurons in the RVLM. The results indicate that neurons in the RP region make a modest contribution to the renal sympathoexcitatory response evoked from the DMH and also that sympathetic premotor neurons in the RVLM receive strong excitatory inputs from DMH neurons, consistent with the view that the RVLM plays a key role in mediating sympathetic vasomotor responses arising from the DMH.  相似文献   

4.
A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.  相似文献   

5.
Activation of 5-HT(1A) receptors in the medullary raphé decreases sympathetic outflow to thermoregulatory mechanisms, including brown adipose tissue (BAT), thermogenesis, and peripheral vasoconstriction when these mechanisms are previously activated with leptin, prostaglandins, or cooling. These same mechanisms are also inhibited during rapid eye movement (REM) sleep. It is not known whether shivering is also modulated by medullary raphé neurons. We previously showed in the conscious piglet that activation of 5-HT(1A) receptors with 8-OH-DPAT (DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the midline raphé that contains 5-HT neurons, decreases heart rate, body temperature and muscle activity during non-rapid eye movement (NREM) sleep. We therefore hypothesized that activation of 5-HT(1A) receptors in the PGCL would also attenuate shivering and peripheral vasoconstriction during cooling. During REM sleep in a cool environment, shivering, carbon dioxide production, and body temperature decreased, and ear capillary blood flow and ear skin temperature increased. Shivering associated with rapid cooling was attenuated after dialysis of DPAT into the PGCL. In animals maintained in a continuously cool environment, dialysis of DPAT into the PGCL attenuated shivering and decreased body temperature, but there were no significant increases in ear capillary blood flow or ear skin temperature. We conclude that both naturally occurring REM sleep and exogenous activation of 5-HT(1A) receptors in the PGCL are associated with a suspension of shivering during cooling. Our data are consistent with the hypothesis that 5-HT neurons in the PGCL facilitate oscillating spinal motor circuits involved in shivering but are less involved in modulating sympathetically mediated thermoregulatory mechanisms.  相似文献   

6.
Oxidative stress because of an excessive production of superoxide anion (O2*-) is associated with hypertension. The present study evaluated the hypothesis that in the rostral ventrolateral medulla (RVLM), where the premotor neurons for the maintenance of vascular vasomotor activity are located, increased O2*- contributes to hypertension in spontaneously hypertensive rats (SHR) by modulating the cardiovascular depressive actions of nitric oxide (NO). Compared with normotensive Wistar-Kyoto (WKY) rats, SHR manifested significantly increased basal O2*- production, along with reduced manganese superoxide dismutase (MnSOD) expression and activity, in the RVLM. The magnitude of hypotension, bradycardia, or suppression of sympathetic neurogenic vasomotor tone elicited by microinjection bilaterally into the RVLM of a membrane-permeable SOD mimetic, Mn(III)-tetrakis-(4-benzoic acid) porphyrin (MnTBAP), was also significantly larger in SHR. Transfection bilaterally into the RVLM of adenoviral vectors encoding endothelial nitric oxide synthase resulted in suppression of arterial pressure, heart rate, and sympathetic neurogenic vasomotor tone in both WKY rats and SHR. Microinjection of MnTBAP into the RVLM of SHR further normalized those cardiovascular parameters to the levels of WKY rats. We conclude that an elevated level of O2*- in the RVLM is associated with hypertension in SHR. More importantly, this elevated O2*- may contribute to hypertension by reducing the NO-promoted cardiovascular depression.  相似文献   

7.
The fundamental role and corollary effects of neuropeptides that govern cardiorespiratory control in the brain stem are poorly understood. One such regulatory peptide, catestatin [Cts, human chromogranin A-(352-372)], noncompetitively inhibits nicotinic-cholinergic-stimulated catecholamine release. Previously, we demonstrated the presence of chromogranin A mRNA in brain stem neurons that are important for the maintenance of arterial pressure. In the present study, using immunofluorescence histochemistry, we show that Cts immunoreactivity is colocalized with tyrosine hydroxylase in C1 neurons of the rostral ventrolateral medulla (RVLM, n = 3). Furthermore, we investigated the effects of Cts on resting blood pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and adaptive reflexes. Cts (1 mM in 50 nl or 100 μM in 50-100 nl) was microinjected into the RVLM in urethane-anesthetized, vagotomized, ventilated Sprague-Dawley rats (n = 19). Cardiovascular responses to stimulation of carotid baroreceptors, peripheral chemoreceptors, and the sciatic nerve (somatosympathetic reflex) were analyzed. Cts (1 mM in 50 nl) increased resting arterial pressure (28 ± 3 mmHg at 2 min postinjection), sympathetic nerve activity (15 ± 3% at 2 min postinjection), and phrenic discharge amplitude (31 ± 4% at 10 min postinjection). Cts increased sympathetic barosensitivity 40% (slope increased from -0.05 ± 0.01 before Cts to -0.07 ± 0.01 after Cts) and attenuated the somatosympathetic reflex [1st peak: 36% (from 132 ± 32.1 to 84.0 ± 17.0 μV); 2nd peak: 44% (from 65.1 ± 21.4 to 36.6 ± 14.1 μV)] and chemoreflex (blood pressure response to anoxia decreased 55%, sympathetic response decreased 46%). The results suggest that Cts activates sympathoexcitatory bulbospinal neurons in the RVLM and plays an important regulatory role in adaptive reflexes.  相似文献   

8.
In cold defense and fever, activity increases in sympathetic nerves supplying both tail vessels and interscapular brown adipose tissue (iBAT). These mediate cutaneous vasoconstrictor and thermogenic responses, respectively, and both depend upon neurons in the rostral medullary raphé. To examine the commonality of brain circuits driving these two outflows, sympathetic nerve activity (SNA) was recorded simultaneously from sympathetic fibers in the ventral tail artery (tail SNA) and the nerve to iBAT (iBAT SNA) in urethane-anesthetized rats. From a warm baseline, cold-defense responses were evoked by intermittently circulating cold water through a water jacket around the animal's shaved trunk. Repeated episodes of trunk skin cooling decreased core (rectal) temperature. The threshold skin temperature to activate iBAT SNA was 37.3 +/- 0.5 degrees C (n = 7), significantly lower than that to activate tail SNA (40.1 +/- 0.4 degrees C; P < 0.01, n = 7). A fall in core temperature always strongly activated tail SNA (threshold 38.3 +/- 0.2 degrees C, n = 7), but its effect on iBAT SNA was absent (2 of 7 rats) or weak (threshold 36.9 +/- 0.1 degrees C, n = 5). The relative sensitivity to core vs. skin cooling (K-ratio) was significantly greater for tail SNA than for iBAT SNA. Spectral analysis of paired recordings showed significant coherence between tail SNA and iBAT SNA only at 1.0 +/- 0.1 Hz. The coherence was due entirely to the modulation of both signals by the ventilatory cycle because it disappeared when the coherence spectrum was partialized with respect to airway pressure. These findings indicate that independent central pathways drive cutaneous vasoconstrictor and thermogenic sympathetic pathways during cold defense.  相似文献   

9.
1. The aim of these studies was to test the hypothesis that glutamate is the principal excitatory neurotransmitter in the sympathetic premotor pathway from the rostral ventrolateral medulla (RVLM) to the sympathetic preganglionic neurons (SPNs) in the thoracic spinal cord.2. Iontophoretic and pressure ejection of glutamate receptor agonists and antagonists was made onto antidromically identified splanchnic and adrenal SPNs before and during electrical stimulation of the RVLM in urethane/chloralose-anesthetized, artificially ventilated rats.3. SPNs were excited by both NMDA and non-NMDA glutamate receptor agonists. Blockade of glutamate receptors in the IML interrupted the ability of electrical activation of sympathetic premotor neurons in the RVLM to excite SPNs. Within the IML, antergradely labeled terminals of RVLM neurons were found to contain glutamate immunoreactivity and to make asymmetric synapses on local dendrites.4. These data support a significant role for glutamate neurotransmission in mediating the tonic and phasic excitation of SPNs by the sympathetic premotor pathway from the RVLM. It seems likely that stimulation of the RVLM produces glutamate release from both C1 and non-PNMT-containing axon terminals in the IML.  相似文献   

10.
The gastrointestinal hormone CCK inhibits a subset of presympathetic neurons in the rostroventrolateral medulla (RVLM) that may be responsible for driving the sympathetic vasomotor outflow to the gastrointestinal circulation. We tested the hypothesis that the central neurocircuitry of this novel sympathoinhibitory reflex involves a relay in the caudal ventrolateral medullary (CVLM) depressor area. Blood pressure and greater splanchnic sympathetic nerve discharge (SSND) or lumbar sympathetic nerve discharge (LSND) were monitored in anesthetised, paralyzed male Sprague-Dawley rats. The effects of phenylephrine (PE, 10 microg/kg iv; baroreflex activation), phenylbiguanide (PBG, 10 microg/kg iv; von Bezold-Jarisch reflex) and CCK (4 or 8 microg/kg iv) on SSND or LSND, were tested before and after bilateral injection of 50-100 nl of the GABAA agonist muscimol (1.75 mM; n=6, SSND; n=7, LSND) or the excitatory amino acid antagonist kynurenate (55 mM; n=7, SSND) into the CVLM. PE and PBG elicited splanchnic and lumbar sympathoinhibitory responses that were abolished by bilateral muscimol or kynurenate injection into the CVLM. Similarly, the inhibitory effect of CCK on SSND was abolished after neuronal inhibition within the CVLM. In contrast, CCK-evoked lumbar sympathoexcitation was accentuated following bilateral CVLM inhibition. In control experiments (n=7), these agents were injected outside the CVLM and had no effect on splanchnic sympathoinhibitory responses to PE, PBG, and CCK. In conclusion, neurons in the CVLM are necessary for the splanchnic but not lumbar sympathetic vasomotor reflex response to CCK. This strengthens the view that subpopulations of RVLM neurons supply sympathetic vasomotor outflow to specific vascular territories.  相似文献   

11.
1. Evidence gathered over the last 30 years has firmly established that the rostral ventrolateral medulla (RVLM) is a major vasomotor center in the brainstem, harboring sympathetic premotor neurons responsible for generating and maintaining basal vasomotor tone and resting levels of arterial blood pressure. Although the RVLM has been almost exclusively classified as a vasopressor area, in this report we review some evidence suggesting a prominent role of the RVLM in muscle vasodilation during defense-alerting responses.2. Defense-alerting reactions are a broad class of behavior including flexion of a limb, fight/flight responses, apologies, etc. They comprise species-distinctive motor and neurovegetative adjustments. Cardiovascular responses include hypertension, tachycardia, visceral vasoconstriction, and muscle vasodilation. Since defense-alerting reactions generally involve intense motor activation, muscle vasodilation is regarded as a key feature of these responses.3. In anesthetized or unanesthetized-decerebrate animals, natural or electrical stimulation of cutaneous and muscle afferents produced hypertension, tachycardia, and vasodilation restricted to the stimulated limb.4. Unilateral inactivation of the RVLM contralateral to the stimulated limb abolished cardiovascular adjustments to stimulation of cutaneous and muscle afferents. Within the RVLM glutamatergic synapses mediate pressor responses, whereas GABAergic synapses mediates muscle vasodilation.5. In urethane-anesthetized rats, electrical stimulation of the hypothalamus elicited hypertension, tachycardia, visceral vasoconstriction, and hindlimb vasodilation. The hindlimb vasodilation induced by hypothalamic stimulation is a complex response, involving reduction of sympathetic vasoconstrictor tone, release of catecholamines by the adrenal medulla, and a still unknown system that may use nitric oxide as a mediator.6. Blockade of glutamatergic transmission within the RVLM selectively blocks muscle vasodilation induced by hypothalamic stimulation.7. The results obtained suggest that, besides its role in the generation and maintenance of the sympathetic vasoconstrictor drive, the RVLM is also critical for vasodilatory responses during defense reactions. The RVLM may contain several, distinctive mechanisms for muscle vasodilation. Anatomical and functional characterization of these pathways may represent a breakthrough in our understanding of cardiovascular control in normal and/or pathological conditions.  相似文献   

12.
To determine the organization of presympathetic vasomotor drive by phenotypic populations of rostral ventrolateral medulla (RVLM) neurons, we examined the somatosympathetic reflex (SSR) evoked in four sympathetic nerves together with selective lesions of RVLM presympathetic neurons. Urethane-anesthetized (1.3 g/kg ip), paralyzed, vagotomized and artificially ventilated Sprague-Dawley rats (n = 41) were used. First, we determined the afferent inputs activated by sciatic nerve (SN) stimulation at graded stimulus intensities (50 sweeps at 0.5-1 Hz, 1-80 V). Second, we recorded sympathetic nerve responses (cervical, renal, splanchnic, and lumbar) to intensities of SN stimulation that activated A-fiber afferents (low) or both A- and C-fiber afferents (high). Third, with low-intensity SN stimulation, we examined the cervical SSR following RVLM microinjection of somatostatin, and we determined the splanchnic SSR in rats in which presympathetic C1 neurons were lesioned following intraspinal injections of anti-dopamine-β-hydroxylase-saporin (anti-DβH-SAP). Low-intensity SN stimulation activated A-fiber afferents and evoked biphasic responses in the renal, splanchnic, and lumbar nerves and a single peak in the cervical nerve. Depletion of presympathetic C1 neurons (59 ± 4% tyrosine hydroxylase immunoreactivity profiles lesioned) eliminated peak 2 of the splanchnic SSR and attenuated peak 1, suggesting that only RVLM neurons with fast axonal conduction were spared. RVLM injections of somatostatin abolished the single early peak of cervical SSR confirming that RVLM neurons with fast axonal conduction were inhibited by somatostatin. It is concluded that unmyelinated RVLM presympathetic neurons, presumed to be all C1, innervate splanchnic, renal, and lumbar but not cervical sympathetic outflows, whereas myelinated C1 and non-C1 RVLM neurons innervate all sympathetic outflows examined. These findings suggest that multiple levels of neural control of vasomotor tone exist; myelinated populations may set baseline tone, while unmyelinated neurons may be recruited to provide actions at specific vascular beds in response to distinct stressors.  相似文献   

13.
To determine whether differential sympathetic nerve responses to hypoxia are explained by opposing effects of hypoxia upon sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM), the cardiac sympathetic nerve and the renal sympathetic nerve were recorded in anesthetized and vagotomized rabbits. Renal sympathetic nerve was activated by the injection of sodium cyanide solution close to the bifurcation of the common carotid artery and/or by inhalation of hypoxic gas (3% oxygen-97% nitrogen). On the other hand, cardiac sympathetic nerve was inhibited by these stimuli. Barosensitive (inhibited by the stimulation of baroreceptor afferents) reticulospinal (antidromically activated by the stimulation of the spinal cord) neurons in the RVLM were divided into three groups according to their responses to hypoxic stimulation: neurons (Type I, n = 25), the activity of which was inhibited by the injection of sodium cyanide solution close to the bifurcation of the common carotid artery and/or by inhalation of hypoxic gas, neurons (Type II, n = 99), the activity of which was facilitated by the same stimulation, and neurons (Type III, n = 11), the activity of which was not changed. These data indicated that the differential responses of cardiac and renal sympathetic nerves might be due to opposing effects of hypoxia on individual RVLM neurons.  相似文献   

14.
15.
The periaqueductal gray (PAG) is an important integrative region in the regulation of autonomic outflow and cardiovascular function and may serve as a regulatory center as part of a long-loop pathway during somatic afferent stimulation with acupuncture. Because the ventrolateral PAG (vlPAG) provides input to the rostral ventrolateral medulla (rVLM), an important area for electroacupuncture (EA) regulation of sympathetic outflow, we hypothesized that the vlPAG plays a role in the EA-related modulation of rVLM premotor sympathetic neurons activated during visceral afferent stimulation and autonomic excitatory reflexes. Cats were anesthetized and ventilated, and heart rate and mean blood pressure were monitored. Stimulation of the splanchnic nerve by a pledget of filter paper soaked in bradykinin (BK, 10 mug/ml) every 10 min on the gallbladder induced consistent cardiovascular reflex responses. Bilateral stimulation with EA at acupoints over the pericardial meridian (P5-6) situated over the median nerve reduced the increases in blood pressure from 34 +/- 3 to 18 +/- 5 mmHg for a period of time that lasted for 60 min or more. Unilateral inactivation of neuronal activity in the vlPAG with 50-75 nl of kainic acid (KA, 1 mM) restored the blood pressure responses from 18 +/- 3 to 36 +/- 5 mmHg during BK-induced gallbladder stimulation, an effect that lasted for 30 min. In the absence of EA, unilateral microinjection of the excitatory amino acid dl-homocysteic acid (DLH, 4 nM) in the vlPAG mimicked the effect of EA and reduced the reflex blood pressure responses from 35 +/- 6 to 14 +/- 5 mmHg. Responses of 21 cardiovascular sympathoexcitatory rVLM neurons, including 12 that were identified as premotor neurons, paralleled the cardiovascular responses. Thus splanchnic nerve-evoked neuronal discharge of 32 +/- 4 spikes/30 stimuli in six neurons was reduced to 10 +/- 2 spikes/30 stimuli by EA, which was restored rapidly to 28 +/- 4 spikes/30 stimuli by unilateral injection of 50 nl KA into the vlPAG. Conversely, 50 nl of DLH in the vlPAG reduced the number of action potentials of 5 rVLM neurons from 30 +/- 4 to 18 +/- 4 spikes/30 stimuli. We conclude that the inhibitory influence of EA involves vlPAG stimulation, which, in turn, inhibits rVLM neurons in the EA-related attenuation of the cardiovascular excitatory response during visceral afferent stimulation.  相似文献   

16.
Exercise training (ExTr) has been associated with blunted activation of the sympathetic nervous system in several animal models and in some human studies. Although these data are consistent with the hypothesis that ExTr reduces the incidence of cardiovascular diseases via reduced sympathoexcitation, the mechanisms are unknown. The rostral ventrolateral medulla (RVLM) is important in control of sympathetic nervous system activity in both physiological and pathophysiological states. The purpose of the present study was to test the hypothesis that ExTr results in reduced sympathoexcitation mediated at the level of the RVLM. Male Sprague-Dawley rats were treadmill trained or remained sedentary for 8-10 wk. RVLM microinjections were performed under Inactin anesthesia while mean arterial pressure, heart rate, and lumbar sympathetic nerve activity (LSNA) were recorded. Bilateral microinjections of the GABA(A) antagonist bicuculline (5 mM, 90 nl) into the RVLM increased LSNA in sedentary animals (169 +/- 33%), which was blunted in ExTr animals (100 +/- 22%, P < 0.05). Activation of the RVLM with unilateral microinjections of glutamate (10 mM, 30 nl) increased LSNA in sedentary animals (76 +/- 13%), which was also attenuated by training (26 +/- 2%, P < 0.05). Bilateral microinjections of the ionotropic glutamate receptor antagonist kynurenate (40 mM, 90 nl) produced small increases in mean arterial pressure and LSNA that were similar between groups. Results suggest that ExTr may reduce increases in LSNA due to reduced activation of the RVLM. Conversely, we speculate that the relatively enhanced activation of LSNA in sedentary animals may be related to the increased incidence of cardiovascular disease associated with a sedentary lifestyle.  相似文献   

17.
Neurons in the caudal pressor area (CPA) are a source of tonic sympathoexcitation that is dependent on activation of cardiovascular sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM). In the present study, we sought to clarify the mechanism through which CPA neurons elicit increases in RVLM neuronal discharge, vasoconstrictor sympathetic tone, and arterial pressure. In urethan-chloralose-anesthetized, paralyzed, and artificially ventilated rats, bilateral disinhibition of CPA with bicuculline (Bic) after bilateral disinhibition of caudal ventrolateral medulla (CVLM) caused increases in splanchnic sympathetic nerve activity (+277% control) and arterial pressure (+54 mmHg). Inhibition of CVLM neurons with muscimol abolished the pressor response to activation of CPA neurons, suggesting that neurons within CVLM mediate the excitatory responses from CPA. Disinhibition of CVLM and CPA with Bic enhanced the sympathoexcitatory responses to stimulation of CPA with DL-homocysteic acid, which were blocked by microinjections of kynurenic acid into CVLM. We conclude that the pathway from CPA to RVLM involves an obligatory glutamatergic activation of sympathoexcitatory neurons in the vicinity of CVLM.  相似文献   

18.
We evaluated the contribution of superoxide anion (O2*-) generated by NADPH oxidase or mitochondria in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for arterial pressure maintenance are located, on cardiovascular depression induced by inducible nitric oxide synthase-derived NO after Escherichia coli lipopolysaccharide (LPS) treatment. In Sprague-Dawley rats maintained under propofol anesthesia, microinjection of LPS bilaterally into the RVLM induced progressive hypotension, bradycardia, and reduction in sympathetic vasomotor outflow over our 240-min observation period. This was accompanied by an increase in O2*- production (60-240 min) in the RVLM, alongside phosphorylation of p47(phox) or p67(phox), upregulation of gp91(phox) or p47(phox) protein, and increase in Rac-1 or NADPH oxidase activity (60-120 min), and a depression of mitochondrial respiratory enzyme activity (120-240 min). Whereas inhibition of NADPH oxidase or knockdown of the gp91(phox) or p47(phox) gene blunted the early phase (60-150 min), coenzyme Q10 or mitochondrial K(ATP) channel inhibitor antagonized the delayed phase (120-240 min) of LPS-induced increase in O2*- production in RVLM and cardiovascular depression. We conclude that, whereas NADPH oxidase-derived O2*- in RVLM participates predominantly in the early phase, O2*- generated by depression in mitochondrial respiratory enzyme activity or opening of mitoK(ATP) channels mediates the delayed phase of LPS-induced cardiovascular depression.  相似文献   

19.
This study evaluated the hypothesis that the repertoire of cellular events that underlie circulatory fatality during endotoxemia may entail mitochondrial respiratory enzyme dysfunction, followed by the release of cytochrome c to the cytosol that triggers the activation of caspase cascades, leading to apoptotic cell death in the rostral ventrolateral medulla (RVLM) where sympathetic premotor neurons responsible for maintaining vasomotor tone are located. In adult Sprague-Dawley rats maintained under propofol anesthesia, nucleosomal DNA fragmentation was detected in the RVLM in a temporal profile that coincided positively with the progression of cardiovascular depression during experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS). LPS also induced nitric oxide (NO) and superoxide (O(2)(-)) production, depressed mitochondrial Complex I and IV activity, promoted the release of cytochrome c from mitochondria to cytosol, upregulated the cytosolic expression of activated caspase-9 and -3, or increased caspase-3 enzyme activity in the RVLM. Microinjection bilaterally into the RVLM of an inducible nitric oxide synthase (iNOS) blocker, S-methylisothiourea, or a superoxide dismutase mimetic, Tempol, significantly blunted these apoptotic cellular events and antagonized the cardiovascular depression during endotoxemia. We conclude that caspase-dependent apoptotic cell death that results from NO- and O(2)(-)-associated mitochondrial signaling in the RVLM may underlie fatal cardiovascular depression during endotoxemia.  相似文献   

20.
Neurons in the rostral medullary raphe/parapyramidal region regulate cutaneous sympathetic nerve discharge. Using focal electrical stimulation at different dorsoventral raphe/parapyramidal sites in anesthetized rabbits, we have now demonstrated that increases in ear pinna cutaneous sympathetic nerve discharge can be elicited only from sites within 1 mm of the ventral surface of the medulla. By comparing the latency to sympathetic discharge following stimulation at the ventral raphe site with the corresponding latency following stimulation of the spinal cord [third thoracic (T3) dorsolateral funiculus] we determined that the axonal conduction velocity of raphe-spinal neurons exciting ear pinna sympathetic vasomotor nerves is 0.8 +/- 0.1 m/s (n = 6, range 0.6-1.1 m/s). Applications of the 5-hydroxytryptamine (HT)(2A) antagonist trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate (SR-46349B, 80 microg/kg in 0.8 ml) to the cerebrospinal fluid above thoracic spinal cord (T1-T7), but not the lumbar spinal cord (L2-L4), reduced raphe-evoked increases in ear pinna sympathetic vasomotor discharge from 43 +/- 9 to 16 +/- 6% (P < 0.01, n = 8). Subsequent application of the excitatory amino acid (EAA) antagonist kynurenic acid (25 micromol in 0.5 ml) substantially reduced the remaining evoked discharge (22 +/- 8 to 6 +/- 6%, P < 0.05, n = 5). Our conduction velocity data demonstrate that only slowly conducting raphe-spinal axons, in the unmyelinated range, contribute to sympathetic cutaneous vasomotor discharge evoked by electrical stimulation of the medullary raphe/parapyramidal region. Our pharmacological data provide evidence that raphe-spinal neurons using 5-HT as a neurotransmitter contribute to excitation of sympathetic preganglionic neurons regulating cutaneous vasomotor discharge. Raphe-spinal neurons using an EAA, perhaps glutamate, make a substantial contribution to the ear sympathetic nerve discharge evoked by raphe stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号