首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Powdery mildew caused by Podosphaera xanthii has become a major problem in melon since it occurs all year round irrespective of the growing system. The TGR-1551 melon genotype was found to be resistant to several melon diseases, among them powdery mildew. However, the corresponding resistance genes have been never mapped. We constructed an integrated genetic linkage map using an F2 population derived from a cross between the multi-resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’. The map spans 1,284.9 cM, with an average distance of 3.6 cM among markers, and consists of 354 loci (188 AFLP, 39 RAPD, 111 SSR, 14 SCAR/CAPS/dCAPS, and two phenotypic traits) distributed in 14 linkage groups. QTL analysis identified one major QTL (Pm-R) on LG V for resistance to races 1, 2, and 5 of powdery mildew. The PM4-CAPS marker is closely linked to the Pm-R QTL at a genetic distance of 1.9 cM, and the PM3-CAPS marker is located within the support interval of this QTL. These codominant markers, together with the map information reported here, could be used for melon breeding, and particularly for genotyping selection of resistance to powdery mildew in this vegetable crop species.  相似文献   

2.
A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon × Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0–34.4 and 28.9–31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14–70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.  相似文献   

3.
Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.  相似文献   

4.
5.
Two populations (Pop) segregating quantitatively for resistance to downy mildew (DM), caused by Plasmopara viticola, were used to construct genetic maps and to carry out quantitative trait locus (QTL) analysis. Pop1 comprised of 174 F1 individuals from a cross of ‘Moscato Bianco’, a susceptible Vitis vinifera cultivar, and a resistant individual of Vitis riparia. Pop2 consisted of 94 progeny from a cross of two interspecific hybrids, ‘VRH3082 1-42’ and ‘SK77 5/3’, with resistance traits inherited from Vitis rotundifolia and Vitis amurensis, respectively. Resistance of progeny was measured in field and greenhouse conditions by visual evaluation of disease symptoms on leaves. Linkage maps of 1037.2 and 651 cM were built essentially with simple sequence repeat markers and were enriched with gene-derived single-strand conformational polymorphism and single-nucleotide polymorphism markers. Simple interval mapping and Kruskall–Wallis analysis detected a stable QTL involved in field resistance to DM on linkage group (LG) 7 of the Pop1 integrated map co-localized with a putative Caffeoyl-CoA O-methyltransferase-derived marker. Additional QTLs were detected on LGs 8, 12 and 17. We were able to identify genetic factors correlated with resistance to P. viticola with lower statistical significance on LGs 1, 6 and 7 of the Pop2 map. Finally, no common QTLs were found between the two crosses analyzed. A search of the grapevine genome sequence revealed either homologues to non-host-, host- or defense-signalling genes within the QTL intervals. These positional candidate genes may provide new information about chromosomal regions hosting phenotypic loci.  相似文献   

6.
Downy mildew caused by the fungus Peronospora parisitica is a serious threat to members of the Brassicaceae family. Annually, a substantial loss of yield is caused by the widespread presence of this disease in warm and humid climates. The aim of this study was to localize the genetic factors affecting downy mildew resistance in Chinese cabbage (Brassica rapa ssp. pekinensis). To achieve this goal, we improved a preexisting genetic map of a doubled-haploid population derived from a cross between two diverse Chinese cabbage lines, 91-112 and T12-19, via microspore culture. Microsatellite simple sequence repeat (SSR) markers, isozyme markers, sequence-related amplified polymorphism markers, sequence-characterized amplified region markers and sequence-tagged-site markers were integrated into the previously published map to construct a composite Chinese cabbage map. In this way, the identities of linkage groups corresponding to the Brassica A genome reference map were established. The new map contains 519 markers and covers a total length of 1,070 cM, with an average distance between markers of 2.06 cM. All markers were designated as A1–A10 through alignment and orientation using 55 markers anchored to previously published B. rapa or B. napus reference maps. Of the 89 SSR markers mapped, 15 were newly developed from express sequence tags in Genbank. The phenotypic assay indicated that a single major gene controls seedling resistance to downy mildew, and that a major QTL was detected on linkage group A8 by both interval and MQM mapping methods. The RAPD marker K14-1030 and isozyme marker PGM flanked this major QTL in a region spanning 2.9 cM, and the SSR marker Ol12G04 was linked to this QTL by a distance of 4.36 cM. This study identified a potential chromosomal segment and tightly linked markers for use in marker-assisted selection to improve downy mildew resistance in Chinese cabbage.  相似文献   

7.
QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.)   总被引:5,自引:0,他引:5  
A population of F7 recombinant inbred lines (RILs) was made from a cross between susceptible (‘Santou’) and resistant (PI197088-1) lines of cucumber in order to study powdery mildew resistance loci. Susceptibility to powdery mildew in the F7 RIL individuals showed a continuous distribution from susceptible to resistant, suggesting that powdery mildew resistance is controlled by quantitative trait loci (QTLs). A QTL analysis identified two and three loci for powdery mildew resistance under 26 and 20°C conditions, respectively. One QTL was found in the same position under both temperature conditions. Therefore, it is more likely that one major QTL acts under both temperature conditions and that other QTLs are specific to the two temperature conditions. The above results suggest that the four QTLs are controlled in a different temperature manner, and that their combination played an important role in expressing a high level of resistance to powdery mildew in this cucumber population. Sequence-tagged site (STS) markers associated with each QTL were developed and would be useful for breeding a cucumber line with a high level of powdery mildew resistance. Y. Sakata and N. Kubo contributed equally to this work and are considered as first authors.  相似文献   

8.
The cucumber lines, S94 (Northern China open-field type, powdery mildew (PM) susceptible) and S06 (European greenhouse type, PM resistant), and their F6:7 populations were used to investigate PM re-sistance under seedling spray inoculation in 2005/Autumn and 2006/Spring. QTL analysis was under-taken based on a constructed molecular linkage map of the corresponding F6 population using com-posite interval mapping. A total of four QTLs (pm1.1, pm2.1, pm4.1 and pm6.1) for PM resistance were identified and located on LG 1, 2, 4 and 6, respectively, explaining 5.2%-21.0% of the phenotypic variation. Three consistent QTLs (pm1.1, pm2.1 and pm4.1) were detected under the two test conditions. The QTL pm6.1 was only identified in 2005/Autumn. The total phenotypic variation explained by the QTLs was 52.0% and 42.0% in 2005/Autumn and 2006/Spring, respectively. Anchor markers tightly linked to those loci (<5 cM) could lay a basis for both molecular marker-assisted breeding and map-based gene cloning of the PM-resistance gene in cucumber.  相似文献   

9.
Powdery mildew limits cucumber production worldwide. Most resistant cucumber cultivars become susceptible to powdery mildew at low temperatures. Resistance within a wide temperature range is therefore desirable for cucumber production. We constructed a cucumber genetic linkage map based on a population of 111 recombinant inbred lines derived from a cross between CS-PMR1, with strong and temperature-independent resistance, and Santou, with moderate and temperature-dependent resistance. The map spans 693.0 cM and consists of 296 markers segregating into seven linkage groups; the markers include 289 simple sequence repeats (SSRs), six sequence characterized amplified regions, and one inter simple sequence repeat. Due to the presence of 150 common SSR markers, we were able to compare our map with previously published maps obtained by using populations derived from inter- or intra-variety crosses. We also evaluated powdery mildew resistance of the recombinant inbred lines and identified seven quantitative trait loci (QTL) contributed by CS-PMR1 and two QTL contributed by Santou. Four QTL (pm3.1, pm5.1, pm5.2 and pm5.3) were successfully validated by using populations derived from residual heterozygous lines. Some of the QTL identified in our study are in good agreement with previously published results obtained with materials of different origin. The markers reported here would be useful for introducing high and temperature-independent resistance by accumulation of QTL from CS-PMR1 and Santou.  相似文献   

10.
Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a major disease of economically important forage crops such as ryegrasses and fescues. Targeted breeding based on seedling inoculation has resulted in cultivars with considerable levels of resistance. However, the mechanisms of inheritance of resistance are poorly understood and further breeding progress is difficult to obtain. This study aimed to assess the relevance of the seedling screening in the glasshouse for adult plant resistance in the field and to investigate genetic control of resistance to bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.). A mapping population consisting of 306 F1 individuals was established and resistance to bacterial wilt was assessed in glasshouse and field experiments. Highly correlated data (r = 0.67–0.77, P < 0.01) between trial locations demonstrated the suitability of glasshouse screens for phenotypic selection. Analysis of quantitative trait loci (QTL) based on a high density genetic linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed a single major QTL on linkage group (LG) 4 explaining 67% of the total phenotypic variance (Vp). In addition, a minor QTL was observed on LG 5. Field experiments confirmed the major QTL on LG 4 to explain 43% (in 2004) to 84% (in 2005) of Vp and also revealed additional minor QTLs on LG 1, LG 4 and LG 6. The identified QTLs and the closely linked markers represent important targets for marker-assisted selection of Italian ryegrass.  相似文献   

11.
Powdery mildew caused by Podosphaera xanthii is a major disease in melon crops, and races 1, 2, and 5 of this fungus are those that occur most frequently in southern Europe. The genotype TGR-1551 bears a dominant gene that provides resistance to these three races of P. xanthii. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), we identified eight markers linked to this dominant gene. Cloning and sequencing of the selected AFLP fragments allowed the development of six codominant PCR-based markers which mapped on the linkage group (LG) V. Sequence analysis of these markers led to the identification of two resistance-like genes, MRGH5 and MRGH63, belonging to the nucleotide binding site (NBS)-leucine-rich repeat (LRR) gene family. Quantitative trait loci (QTL) analysis detected two QTLs, Pm-R1-2 and Pm-R5, the former significantly associated with the resistance to races 1 and 2 (LOD score of 26.5 and 33.3; 53.6 and 61.9% of phenotypic variation, respectively), and the latter with resistance to race 5 (LOD score of 36.8; 65.5% of phenotypic variation), which have been found to be colocalized with the MRGH5 and MRGH63 genes, respectively. The results suggest that the cluster of NBS-LRR genes identified in LG V harbours candidate genes for resistance to races 1, 2, and 5 of P. xanthii. The evaluation of other resistant germplasm showed that the codominant markers here reported are also linked to the Pm-w resistance gene carried by the accession ‘WMR-29’ proving their usefulness as genotyping tools in melon breeding programmes.  相似文献   

12.
Powdery mildew, caused by the ascomycete fungus Podosphaera leucotricha, is one of the most damaging diseases of apple worldwide. Polygenically determined resistance might contribute to a significant increase of resistance to this disease in new cultivars. A quantitative trait locus (QTL) analysis was performed in an F1 progeny derived from a cross between the apple cultivar Discovery and the apple hybrid TN10-8. Powdery mildew incidence was assessed during four years (five seasons) in spring and/or autumn in a French local orchard. Seven additive and/or dominant QTLs were detected over the five seasons, with effects (R 2) ranging from 7.5% to 27.4% of the progeny phenotypic variation. Two QTLs, on linkage groups (LGs) 2 and 13, were consistently identified and accounted together from 29% to 37% of the phenotypic variation according to the year of assessment. The other QTLs were identified during one (LGs 1, 14), two (LG10), or three (LGs 8, 17) seasons. Their instability indicated a changing genetic determinism according to the year of assessment, for which several hypotheses may be put forward. The QTLs on LGs 2 and 8 mapped close to clusters of resistance gene analogs (RGAs) and major genes for resistance to mildew or apple scab previously identified. The stable QTLs identified on LGs 2 and 13, together with the strong effect QTL located on LG 8, are of special interest for breeding purposes, especially if combined with other major resistance genes.  相似文献   

13.
Powdery mildew (Blumeria graminis f. sp. tritici) is one of the major diseases of wheat (Triticum aestivum). Adult plant resistance (APR) to powdery mildew is considered more durable than resistance conferred by major race-specific resistance genes. The objective of the present study was a better understanding of the genetic basis of APR in RE714 by means of QTL analysis of several resistance scores along the growing season. A population of 160 recombinant inbred lines obtained from the cross between RE714 and Hardi (susceptible) was assessed for APR under natural infection conditions during 3 years and a genetic map with whole genome coverage was developed with microsatellite and AFLP markers in this population. Two major QTL on chromosomes 5D and 6A were detected each year, and 6 minor QTL were detected only in 1 or 2 years. The QTL on chromosome 5D was detected during all the growing season each year and its R 2 value varied between 8.5 and 56.3%, whereas the QTL on chromosome 6A was detected at 1–4 scoring dates in the 3 years, and its R 2 value varied between 6.1 and 20.5%. The two QTL explained between 24.4 and 52.1% of the phenotypic variance for AUDPC, depending on the year. The models including QTL and cofactors in the composite interval mapping explained between 29 and 72% of the variance. The molecular markers linked to the two major QTL could be used in marker-assisted selection for adult plant resistance to powdery mildew. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A set of 59 spring barley introgression lines (ILs) was developed from the advanced backcross population S42. The ILs were generated by three rounds of backcrossing, two to four subsequent selfings, and, in parallel, marker-assisted selection. Each line includes a single marker-defined chromosomal segment of the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is derived from the elite barley cultivar Scarlett (H. vulgare ssp. vulgare). Based on a map containing 98 SSR markers, the IL set covers so far 86.6% (1041.5 cM) of the donor genome. Each single line contains an average exotic introgression of 39.2 cM, representing 3.2% of the exotic genome. The utility of the developed IL set is illustrated by verification of QTLs controlling resistance to powdery mildew (Blumeria graminis f. sp. hordei L.) and leaf rust (Puccinia hordei L.) which were previously identified in the advanced backcross population S42. Altogether 57.1 and 75.0% of QTLs conferring resistance to powdery mildew and leaf rust, respectively, were verified by ILs. The strongest favorable effects were mapped to regions 1H, 0–85 cM and 4H, 125–170 cM, where susceptibility to powdery mildew and leaf rust was decreased by 66.1 and 34.7%, respectively, compared to the recurrent parent. In addition, three and one new QTLs were localized, respectively. A co-localization of two favorable QTLs was identified for line S42IL-138, which holds an introgressed segment in region 7H, 166–181. Here, a reduction effect was revealed for powdery mildew as well as for leaf rust severity. This line might be a valuable resource for transferring new resistance alleles into elite cultivars. In future, we aim to cover the complete exotic genome by selecting additional ILs. We intend to conduct further phenotype studies with the IL set in regard to the trait complexes agronomic performance, malting quality, biotic stress, and abiotic stress.  相似文献   

15.
A limited genetic mapping strategy based on simple sequence repeat (SSR) marker data was used with five grape populations segregating for powdery mildew (Erysiphe necator) resistance in an effort to develop genetic markers from multiple sources and enable the pyramiding of resistance loci. Three populations derived their resistance from Muscadinia rotundifolia ‘Magnolia’. The first population (06708) had 97 progeny and was screened with 137 SSR markers from seven chromosomes (4, 7, 9, 12, 13, 15, and 18) that have been reported to be associated with powdery or downy mildew resistance. A genetic map was constructed using the pseudo-testcross strategy and QTL analysis was carried out. Only markers from chromosome 13 and 18 were mapped in the second (04327) and third (06712) populations, which had 47 and 80 progeny, respectively. Significant QTLs for powdery mildew resistance with overlapping genomic regions were identified for different tissue types (leaf, stem, rachis, and berry) on chromosome 18, which distinguishes the resistance in ‘Magnolia’ from that present in other accessions of M. rotundifolia and controlled by the Run1 gene on chromosome 12. The ‘Magnolia’ resistance locus was termed as Run2.1. Powdery mildew resistance was also mapped in a fourth population (08391), which had 255 progeny and resistance from M. rotundifolia ‘Trayshed’. A locus accounting for 50% of the phenotypic variation mapped to chromosome 18 and was named Run2.2. This locus overlapped the region found in the ‘Magnolia’-based populations, but the allele sizes of the flanking markers were different. ‘Trayshed’ and ‘Magnolia’ shared at least one allele for 68% of the tested markers, but alleles of the other 32% of the markers were not shared indicating that the two M. rotundifolia selections were very different. The last population, 08306 with 42 progeny, derived its resistance from a selection Vitis romanetii C166-043. Genetic mapping discovered a major powdery mildew resistance locus termed Ren4 on chromosome 18, which explained 70% of the phenotypic variation in the same region of chromosome 18 found in the two M. rotundifolia resistant accessions. The mapping results indicate that powdery mildew resistance genes from different backgrounds reside on chromosome 18, and that genetic markers can be used as a powerful tool to pyramid these loci and other powdery mildew resistance loci into a single line.  相似文献   

16.
The Pacific oyster (Crassostrea gigas) is one of the most important oysters cultured worldwide. To analyze the oyster genome and dissect growth-related traits, we constructed a sex-averaged linkage map by combining 64 genomic simple sequence repeats, 42 expressed sequence tag-derived SSRs, and 320 amplified fragment length polymorphism markers in an F1 full-sib family. A total of 426 markers were assigned to 11 linkage groups, spanning 558.2 cM with an average interval of 1.3 cM and 94.7% of genome coverage. Segregation distortion was significant for 18.8% of the markers (P < 0.05), and distorted markers tended to occur on some genetic regions or linkage groups. Most growth-related quantitative traits were highly significantly (P < 0.01) correlated, and principal component analysis obtained four principal components. Quantitative trait locus (QTL) analysis identified three significant QTLs for two principal components, which explained 0.6–13.9% of the phenotypic variation. One QTL for sex was detected on linkage group 6, and the inheritabilities of sex for parental alleles and maternal alleles on that locus C15 are 39.8% and 0.01%, respectively. The constructed linkage map and determined QTLs can provide a tool for further genetic analysis of the traits and be potential for marker-assisted selection in C. gigas breeding.  相似文献   

17.
Powdery mildew and scald can cause significant yield loss in barley. In order to identify new resistance genes for powdery mildew and scald in barley, two barley doubled haploid (DH) populations were screened for adult plant resistance in the field and glasshouse under natural infection. The mapping populations included 92 DH lines from the cross of TX9425 × Franklin and 177 DH lines from the cross of Yerong × Franklin. Two quantitative trait loci (QTL) for resistance to powdery mildew were identified in the TX9425 × Franklin population. These QTL were mapped to chromosomes 7H and 5H, respectively. The phenotypic variation explained by the two QTL detected in this population was 22 and 17%, respectively. Three significant QTL were identified from the Yerong × Franklin population for the resistance to powdery mildew; the major one, detected on the short arm of chromosome 1H, explained 66% of phenotypic variation. The major QTL for scald resistance, identified from two different populations which shared a common parent, Franklin, were mapped in the similar position on 3H. However, the Franklin allele provided resistance to one population but susceptibility to the other population. The Yerong allele on 3H showed much better resistance to scald than the Franklin allele, which has not been reported before. Using high-density maps for both populations, some markers which were very close to the resistance genes were identified. Transgression beyond the parents in disease resistances of the DH populations indicates that both small-effect QTLs and genetic background may also have significant contributions towards the resistance.  相似文献   

18.
Powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease of wheat (Triticum aestivum L.) that can be controlled by resistance breeding. The CIMMYT bread wheat line Saar is known for its good level of partial and race non-specific resistance, and the aim of this study was to map QTLs for resistance to powdery mildew in a population of 113 recombinant inbred lines from a cross between Saar and the susceptible line Avocet. The population was tested over 2 years in field trials at two locations in southeastern Norway and once in Beijing, China. SSR markers were screened for association with powdery mildew resistance in a bulked segregant analysis, and linkage maps were created based on selected SSR markers and supplemented with DArT genotyping. The most important QTLs for powdery mildew resistance derived from Saar were located on chromosomes 7DS and 1BL and corresponded to the adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29. A major QTL was also located on 4BL with resistance contributed by Avocet. Additional QTLs were detected at 3AS and 5AL in the Norwegian testing environments and at 5BS in Beijing. The population was also tested for leaf rust (caused by Puccinia triticina) and stripe rust (caused by P. striiformis f. sp. tritici) resistance and leaf tip necrosis in Mexico. QTLs for these traits were detected on 7DS and 1BL at the same positions as the QTLs for powdery mildew resistance, and confirmed the presence of Lr34/Yr18 and Lr46/Yr29 in Saar. The powdery mildew resistance gene at the Lr34/Yr18 locus has recently been named Pm38. The powdery mildew resistance gene at the Lr46/Yr29 locus is designated as Pm39.  相似文献   

19.
Powdery mildew significantly affects grain yield and end-use quality of winter wheat in the southern Great Plains. Employing resistance resources in locally adapted cultivars is the most effective means to control powdery mildew. Two types of powdery mildew resistance exist in wheat cultivars, i.e., qualitative and quantitative. Qualitative resistance is controlled by major genes, is race-specific, is not durable, and is effective in seedlings and in adult plants. Quantitative resistance is controlled by minor genes, is non-race-specific, is durable, and is predominantly effective in adult plants. In this study, we found that the segregation of powdery mildew resistance in a population of recombinant inbred lines developed from a cross between the susceptible cultivar Jagger and the resistant cultivar 2174 was controlled by a major QTL on the short arm of chromosome 1A and modified by four minor QTLs on chromosomes 1B, 3B, 4A, and 6D. The major QTL was mapped to the genomic region where the Pm3 gene resides. Using specific PCR markers for seven Pm3 alleles, 2174 was found to carry the Pm3a allele. Pm3a explained 61% of the total phenotypic variation in disease reaction observed among seedlings inoculated in the greenhouse and adult plants grown in the field and subjected to natural disease pressure. The resistant Pm3a allele was present among 4 of 31 cultivars currently being produced in the southern Great Plains. The genetic effects of several minor loci varied with different developmental stages and environments. Molecular markers associated with these genetic loci would facilitate incorporating genetic resistance to powdery mildew into improved winter wheat cultivars.  相似文献   

20.
Despite the large impact of powdery mildew in wheat cultivated areas, little has been done to study powdery mildew resistance by QTL analysis up to now. The objective of the present paper is to present how the genetic basis of powdery mildew resistance in the resistant wheat line RE714 have been studied by QTL analysis at the adult plant stage over the course of 3 years, and at the vernalized seedling plant stage, and a comparison between the results obtained. Two segregating populations (DH and F2:3) were derived from the cross between the resistant line (RE714), and a susceptible line (Hardi); these were analysed for powdery mildew resistance at the adult plant stage in the field under natural infection conditions in 1996, 1997 and 1998. The DH population was also tested for powdery mildew resistance at the vernalized seedling stage with four different isolates of powdery mildew. At the adult plant stage, a total of three QTLs (on chromosomes 5D, 4A and 6A) and five QTLs (on chromosomes 5D, 6A, 7A and 7B) were found for the DH and F2:3 populations, respectively. The genetic control of resistance was found to be polygenic but involved a major QTL (on chromosome 5D), which was detected each year and which explained a high proportion of the variability observed (28.1%–37.9%). At the vernalized seedling stage, two QTLs were found (on chromosomes 5D and 7B) and the QTL detected on chromosome 5D was common to the four isolates tested. The comparison between the two development stages showed that the QTL on chromosome 5D was detected in all the different environments tested and again explained a high proportion of the variability. Different molecular interpretations of this QTL have also been discussed. Received: 5 October 2000 / Accepted: 1 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号