首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In healthy individuals, skin integrity is maintained by epidermal stem cells which self-renew and generate daughter cells that undergo terminal differentiation. Epidermal stem cells represent a promising source of stem cells, and their culture has great potential in scientific research and clinical application. However, no single method has been universally adopted for identifying and isolating epidermal stem cells. Here, we reported the isolation and characterization of putative epidermal stem cells from newborn mouse skin. The keratinocytes were separated enzymatically. Putative epidermal stem cells were selected by rapid adherence on a composite matrix made of type I collagen and fibronectin. Unattached cells were discarded after 10 min, and the attached cells were cultured in a defined culture medium. The isolated cells showed the typical epidermal stem cell morphology. Immunofluorescence indicated that the cells were strongly stained for β1 integrin family of extracellular matrix receptors. In conclusion, mouse putative epidermal stem cells were successfully isolated from newborn mouse epidermis on the basis of high rapid adhesion to extracellular matrix proteins and cultured in vitro.  相似文献   

2.
Background aimsStem cells are particularly attractive for many cell-based therapeutic interventions because of their ability to self-renew and their capacity to differentiate into site-specific differentiating cells. Restoration of the integrity of epithelial continuity is an essential aspect of wound repair and tissue regeneration. We are currently looking at the potential of human umbilical cord lining cells as a source of epithelial stem cells with appropriate differentiation capacity for potential epidermal reconstitution.MethodsWe isolated human umbilical cord lining epithelial cells (CLEC) and characterized their phenotype from the perspective of proliferative potential, telomere length, expression of epidermal differentiation markers, as well as stem cell-specific markers, and clonogenicity. Their potential for epidermal reconstitution was investigated in an organotypic culture model.ResultsThe results demonstrated that CLEC present a long telomere length and have a relatively high proliferative potential and passaging ability in culture. CLEC display some of the stem cell-specific markers for epithelial as well as pluripotent stem cells, including CK19, p63, OCT-4, SSEA-4, TRA-1–60, SOX2 and Nanog. CLEC are capable of generating a fully stratified epithelium in organotypic culture.ConclusionsThe potential of CLEC to be used in clinical applications for specialized epithelial reconstruction is still unexplored. The demonstration that CLEC have stem cell-like properties and are capable of generating fully stratified epithelium provides support for their potential clinical application in epidermal reconstitution.  相似文献   

3.
Rhesus putative epidermal stem cells are being investigated for their potential use in regenerative corneal epithelium-like cells, which may provide a practical source of autologous seed cells for the construction of bioengineered corneas. The goal of this study was to investigate the potential of epidermal stem cells for trans-differentiation into corneal epithelium-like cells. Rhesus putative epidermal stem cells were isolated by type IV collagen attachment method. Flow cytometry analysis, immunohistology and RT-PCR were conducted to identify the expression of specific markers (β1m α6 integrin, K15, K1/K10, K3/K12 and CD71) on the isolated rapid attaching cells. The isolated cells were cocultured with human corneal limbal stroma and corneal epithelial cells. After coculture, the expression of the same specific markers was evaluated in order to identify expression difference caused by the coculture conditions. K3/K12 expression was analyzed in coculture cells on day 2, 4, 6, 8 and 10. Putative epidermal stem cells in conditioned culture media were used as control. Putative epidermal stem cells were predominant in rapid attaching cells by type IV collagen attachment isolation. Before being cocultured, the rhesus putative epidermal stem cells expressed K15, α6 and β1 integrin, but no CD71, K1/K10 and K3/K12. After coculture, these cells expressed K3/K12 (a marker of corneal epithelial cells), K15 and β1 integrin, but no K1/K10. Cells being not coculture converted into terminally differentiated cells expressing K1/K10. These results indicate that rhesus putative epidermal stem cells can trans-differentiate into corneal epithelium-like cells and, therefore, may have potential therapeutic application as autologous seed cells for the construction of bioengineered corneas.  相似文献   

4.
Rhesus putative epidermal stem cells are being investigated for their potential use in regenerative corneal epithelium-like cells, which may provide a practical source of autologous seed cells for the construction of bioengineered corneas. The goal of this study was to investigate the potential of epidermal stem cells for trans-differentiation into corneal epithelium-like cells. Rhesus putative epidermal stem cells were isolated by type IV collagen attachment method. Flow cytometry analysis, immunohistology and RT-PCR were conducted to identify the expression of specific markers (β1m α6 integrin, K15, K1/K10, K3/K12 and CD71) on the isolated rapid attaching cells. The isolated cells were cocultured with human corneal limbal stroma and corneal epithelial cells. After coculture, the expression of the same specific markers was evaluated in order to identify expression difference caused by the coculture conditions. K3/K12 expression was analyzed in coculture cells on day 2, 4, 6, 8 and 10. Putative epidermal stem cells in conditioned culture media were used as control. Putative epidermal stem cells were predominant in rapid attaching cells by type IV collagen attachment isolation. Before being cocultured, the rhesus putative epidermal stem cells expressed K15, α6 and β1 integrin, but no CD71, K1/K10 and K3/K12. After coculture, these cells expressed K3/K12 (a marker of corneal epithelial cells), K15 and β1 integrin, but no K1/K10. Cells being not coculture converted into terminally differentiated cells expressing K1/K10. These results indicate that rhesus putative epidermal stem cells can trans-differentiate into corneal epithelium-like cells and, therefore, may have potential therapeutic application as autologous seed cells for the construction of bioengineered corneas. Supported in part by Hi-tech Research and Development Program of China (Grant No. 2003AA205005), the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, No.20030558074), the Key Technologies Research and Development Programme of the Tenth Five-Year Plan (Grant No. 2004BA720A15), Scientific and Technological Program (Grant Nos. A3020101 and 2003A3020401) of Guangdong Province  相似文献   

5.
Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age‐related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell–cell communications and cell–matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose‐binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2‐3Sia‐binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age‐related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.  相似文献   

6.
In adult skin, stem cells in the hair follicle bulge cyclically regenerate the follicle, whereas a distinct stem cell population maintains the epidermis. The degree to which all bulge cells have equal regenerative potential is not known. We found that Sonic hedgehog (Shh) from neurons signals to a population of cells in the telogen bulge marked by the Hedgehog response gene Gli1. Gli1-expressing bulge cells function as multipotent stem cells in their native environment and repeatedly regenerate the anagen follicle. Shh-responding perineural bulge cells incorporate into healing skin wounds where, notably, they can change their lineage into epidermal stem cells. The perineural niche (including Shh) is dispensable for follicle contributions to acute wound healing and skin homeostasis, but is necessary to maintain bulge cells capable of becoming epidermal stem cells. Thus, nerves cultivate a microenvironment where Shh creates a molecularly and phenotypically distinct population of hair follicle stem cells.  相似文献   

7.
人皮肤表皮干细胞是具有无限增殖潜能以及多向分化能力的专能干细胞,广泛存在于表皮基底层以及毛囊隆突部位。目前,表皮干细胞在分离、纯化、培养等领域都取得了一定进展。表皮干细胞的应用主要在皮肤创面的修复、组织工程皮肤的构建以及基因治疗等领域。本文从干细胞的来源、分离、纯化鉴定、培养与应用等方面进行综述。  相似文献   

8.
Enrichment and characterization of mouse putative epidermal stem cells   总被引:8,自引:0,他引:8  
Epidermis, a continuously renewing tissue, is maintained by stem cells that proliferate and replenish worn out or damaged cells in the tissue during life. Cultured epidermal stem cells have great potential in scientific research and clinical application. However, isolating a pure and viable population of epidermal stem cells and culturing them has been challenging. In this study, putative epidermal stem cells of mouse were isolated by combining Hoechst 33342 and propidium iodide staining with fluorescence-activated cell sorting. Molecular markers expression pattern analysis showed that cytokeratin 14, integrin beta1 and p63 are expressed in the sorted putative stem cells, but not active beta-catenin, nestin and involucrin. Our results provide further supporting data that mouse putative epidermal stem cells could be successfully isolated by combining Hoechst dye staining with fluorescence-activated cell sorting and cultured in vitro. The cultured mouse putative epidermal stem cells could be used as a potent tool for studying stem cell biology and testing stem cell therapy.  相似文献   

9.
We found that cultured human keratinocytes with high proliferative potential, the putative epidermal stem cells, expressed a higher level of noncadherin-associated beta-catenin than populations enriched for keratinocytes of lower proliferative potential. To investigate the physiological significance of this, a series of beta-catenin constructs was introduced into keratinocytes via retroviral infection. Full-length beta-catenin and a mutant containing only nine armadillo repeats had little effect on proliferative potential in culture, the full-length protein being rapidly degraded. However, expression of stabilised, N-terminally truncated beta-catenin increased the proportion of putative stem cells to almost 90% of the proliferative population in vitro without inducing malignant transformation, and relieved the differentiation stimulatory effect of overexpressing the E-cadherin cytoplasmic domain. Conversely, beta-catenin lacking armadillo repeats acted as a dominant negative mutant and stimulated exit from the stem cell compartment in culture. The positive and negative effects of the beta-catenin mutants on proliferative potential were independent of effects on cell-cycle kinetics, overt terminal differentiation or intercellular adhesion, and correlated with stimulation or inhibition of transactivation of a TCF/LEF reporter in basal keratinocytes. We conclude that the elevated level of cytoplasmic beta-catenin in those keratinocytes with characteristics of epidermal stem cells contributes to their high proliferative potential.  相似文献   

10.
Despite numerous elegant transgenic mice experiments, the absence of an appropriate in vitro model system has hampered the study of the early events responsible for epidermal and dermal commitments. Embryonic stem (ES) cells are derived from the pluripotent cells of the early mouse embryo. They can be expanded infinitely in vitro while maintaining their potential to spontaneously differentiate into any cell type of the three germ layers, including epidermal cells. We recently reported that ES cells have the potential to recapitulate the reciprocal instructive ectodermal-mesodermal commitments, which are characteristic of embryonic skin formation. Derivation of epidermal cells from murine ES cells has been successfully established by exposing the cells to precisely controlled instructive influences normally found in the body, including extracellular matrix and the morphogen BMP-4. These differentiated ES cells are able to form, in culture, a multilayered epidermis coupled with an underlying dermal compartment similar to native skin. This bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling skin development and epidermal stem cell properties.  相似文献   

11.
Prospects of ex vivo cutaneous gene therapy rely on stable corrective gene transfer in epidermal stem cells followed by engraftment of corrected cells in patients. In the case of cancer prone genodermatoses, such as xeroderma pigmentosum, cells that received the corrective gene must be selected. However, this step is potentially harmful and can increase risks of immune rejection of grafts. These obstacles have recently been overcome thanks to the labeling of genetically modified stem cells using a small epidermal protein naturally absent in stem cells. This approach was shown to be respectful of the fate of epidermal stem cells that retained full growth and differentiation capacities, as well as their potential to regenerate normal human skin when grafted in a mouse model in the long term. These progresses now open realistic avenues towards ex vivo cutaneous gene therapy of cancer prone genodermatoses such as xeroderma pigmentosum. However, major technical improvements are still necessary to preserve skin appendages which would contribute to aesthetic features and comfort of patients.  相似文献   

12.
Embryonic stem (ES) cells are pluripotent cells able to differentiate into many cell types in vitro, thus providing a potential unlimited supply of cells for cognitive in vitro studies and cell-based therapy. We recently reported their efficient ability to recapitulate ectodermal and epidermal fates and form, in culture, a multilayered epidermis coupled with an underlying dermal compartment, similar to native skin. Thus, ES cells have the potential to recapitulate the reciprocal instructive ectodermal-mesodermal commitments, characteristic of embryonic skin formation. We clarified the function of BMP-4 in the binary neuroectodermal choice by stimulating sox-1+ neural precursors to undergo specific apoptosis while inducing epidermal differentiation. We further demonstrated that p63 stimulates ectodermal cell proliferation and is necessary for epidermal commitment. We provided further evidence that this unique cellular model provides a powerful tool to identify the molecular mechanisms controlling normal skin development and to investigate human ectodermal dysplasia congenital pathologies linked to p63 (in p63-ectodermal dysplasia human congenital pathologies). Epidermal stem cell activity has been used for years to repair skin injuries, but ex vivo keratinocyte amplification has limitations and grafted skin homeostasis is not totally satisfactory. Human ES cells raise hopes that the understanding of developmental steps leading to the generation of epidermal stem cells will once be translated into therapeutic benefit. We recently demonstrated that human embryonic stem cells can give rise to a stable somatic ectodermal cell population. Its finite population doubling, normal cell cycle kinetics and the absence of teratoma formation strongly suggest that, although derived from human embryonic stem cells, these ectodermal cells represent a clinically safe somatic cell population. They could thus be particularly useful as a source for committed, homogeneous, non-tumorigenic cell populations to be employed in clinical trials for epithelial stem cell loss.  相似文献   

13.
Zhang C  Chen P  Fei Y  Liu B  Ma K  Fu X  Zhao Z  Sun T  Sheng Z 《Aging cell》2012,11(1):14-23
Aged epidermal cells have the capacity to dedifferentiate into stem cell-like cells. However, the signals that regulate the dedifferentiation of aged epidermal cells remain unclear. Here, we provide evidence that Wnt/β-catenin is critical for aged epidermal cell dedifferentiation in vivo and in vitro. Some aged epidermal cells in human ultrathin epidermal sheets lacking basal stem cells transplanted onto wounds dedifferentiated into stem cell-like cells that were positive for CK19 and β1 integrin but negative for CK10. In addition, Wnt/β-catenin pathway was activated during this process. There was increased expression of Wnt-1, Wnt-4, Wnt-7a, β-catenin, cyclin D1, and c-myc. Secreted frizzled-related protein 1, a Wnt/β-catenin pathway inhibitor, blocked dedifferentiation in vivo. Then, the activator, a highly specific glycogen synthase kinase (GSK)-3β inhibitor, of Wnt/β-catenin pathway was added to the culture medium of aged epidermal cells. Surprisingly, we found that the activator induced higher expression of CK19, β1 integrin, Oct4, and Nanog proteins. The induced aged epidermal cells exhibited high colony-forming efficiency, long-term proliferative potential and could regenerate a skin equivalent (as do epidermal stem cells). These results suggested that activation of Wnt/β-catenin pathway induced the dedifferentiation of aged epidermal cells, which suggest a new approach to generate epidermal stem cell-like cells.  相似文献   

14.
目的:探讨体外分离和培养小鼠表皮干细胞和分析表皮干细胞克隆形成能力的方法。方法:采用中性蛋白酶和胰酶消化新生小鼠表皮基底层细胞,将细胞直接接种在细胞瓶中,在无滋养层条件下培育;利用表皮干细胞标记物K15和α6整联蛋白进行免疫荧光鉴定;以小鼠胚胎成纤维细胞作为滋养层与成年小鼠角质细胞共培养,进而分析表皮干细胞的克隆形成能力。结果:新生小鼠表皮干细胞克隆在培养2~3 d后开始形成,细胞核质较小,细胞呈小而圆的形态特征;传代后的细胞可以被K15和α6整联蛋白特异性标记。结论:利用该方法能够实现对小鼠表皮干细胞的体外培养和传代。  相似文献   

15.
Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.  相似文献   

16.
Epidermal Stem Cells   总被引:1,自引:0,他引:1  
Epidermis contains a compartment of stem cells but currently there is no common criterion to recognize individual stem cells with any confidence. Epidermis appears to contain stem cells of different levels of maturity and it is very likely that the main repository of epidermal stem cells is located in the hair follicle from which cells can emigrate into epidermis and also give rise to follicular and sebaceous keratinocytes. Epidermis consists of proliferative units containing stem and transit-amplifying cells, but the exact size of a proliferative unit cannot be measured accurately. The available data suggest that populations of stem and transit-amplifying cells are not discrete but represent a continuum from cells with a high self-renewal capacity and a low probability of differentiation to those with low self-renewal capacities and high commitments to differentiation. Stem cells occupy a special niche that provides a microenvironment, including an adhesion of stem cells to the basal membrane and their paracrine interactions with neighbor epidermal and mesenchymal cells. The fate of an epidermal stem cell depends on its prehistory and microenvironment.  相似文献   

17.
It has been reported that Wnt/β-catenin is critical for dedifferentiation of differentiated epidermal cells. Cyclin D1 (CCND1) is a β-catenin target gene. In this study, we provide evidence that overexpression of CCND1 induces reprogramming of epidermal cells into stem cell-like cells. After introducing CCND1 gene into differentiated epidermal cells, we found that the large flat-shaped cells with a small nuclear-cytoplasmic ratio changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. The expressions of CK10, β1-integrin, Oct4 and Nanog in CCND1 induced cells were remarkably higher than those in the control group (P < 0.01). In addition, the induced cells exhibited a high colony-forming ability and a long-term proliferative potential. When the induced cells were implanted into a wound of laboratory animal model, the wound healing was accelerated. These results suggested that overexpression of CCND1 induced the reprogramming of differentiated epidermal cells into stem cell-like cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.  相似文献   

18.
The aim of this study was a comparative analysis to the degree of stability of human epidermal cells found at different stages of differentiation to low temperatures. The effect of different subzero temperatures of liquid nitrogen vapor on keratinocytes found both in human skin fragments and as isolated cells extracted from skin fragments has been studied. The degree of stability of epidermal cells low temperatures was evaluated by their ability to form a multilayer stratum in culture; hence this phenomenon explains the survival of a sufficient amount of proliferative cells after exposure to subzero temperatures. Quantitative analysis of the ratio of epidermal stem, transitory and differentiated cells in a population of viable cells before and after exposure to low temperatures were determined using antibodies corresponding to their different stages of differentiation. The results of this research show that the stability of human epidermal cells to low temperature differs depending on their stage of differentiation both in situ and in vitro. Epidermal stem cells and transitory cells are more stable than differentiated cells.  相似文献   

19.
Hair follicle regeneration is controlled by an intricate relationship between epidermal stem cells and their microenvironment. A recent report in Nature by Rompolas et?al. (2012) uses two-photon live imaging to interrogate the spatial organization and cellular requirements for hair follicle regeneration by epidermal stem cells and their immediate progeny.  相似文献   

20.
Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis has a mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new interfollicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover the cellular and signaling basis of this remarkable adult wound regeneration phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号