首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
4.
Understanding miRNAs' regulatory networks and target genes could facilitate the development of therapies for human diseases such as cancer. Although much useful gene expression profiling data for tumor cell lines is available, microarray data for miRNAs and mRNAs in the human HepG2 cell line have only been compared with that of other cell lines separately. The relationship between miRNAs and mRNAs in integrated expression profiles for HepG2 cells is still unknown. To explore the miRNA–mRNA correlations in hepatocellular carcinoma (HCC) cells, we performed miRNA and mRNA expression profiling in HepG2 cells and normal liver HL-7702 cells at the genome scale using next-generation sequencing technology. We identified 193 miRNAs that are differentially expressed in these two cell lines. Of these, 89 miRNAs were down-regulated in HepG2 cells compared with HL-7702 cells, while 104 miRNAs were up-regulated. We also observed 3035 mRNAs that are significantly dys-regulated in HepG2 cells. We then performed an integrated analysis of the expression data for differentially expressed miRNAs and mRNAs and found several miRNA–mRNA pairs that are significantly correlated in HepG2 cells. Further analysis suggested that these differentially expressed genes were enriched in four tumorigenesis-related signaling pathways, namely, ErbB, JAK–STAT, mTOR, and WNT, which until now had not been fully reported. Our results could be helpful in understanding the mechanisms of HCC occurrence and development.  相似文献   

5.
6.
Actin gene expression is modulated by ecdysterone in a Drosophila cell line   总被引:8,自引:0,他引:8  
The steroid hormone ecdysterone induced characteristic and specific changes of morphology, enzymatic activities and protein synthesis in a Kc 0% Drosophila melanogaster cell line. To study the ecdysterone action at a molecular level, a Drosophila genomic library was screened by differential hybridization to poly(A)+ RNA from control and ecdysterone-treated cells. Two recombinant phages were selected for hybridizing very intensively with poly(A)+ RNA of ecdysterone-treated cells and very weakly with poly(A)+ RNA of untreated ones. These two clones (lambda Dm 1632 and lambda Dm A5A1) mapped at the 5 C locus on polytene chromosomes; they overlap for a 9000 base-pair sequence that contains an abundantly transcribed region in ecdysterone-treated cells of about 2000 base-pairs. This region permits the selection of mRNA that gives, after translation in vitro, two polypeptides identified as cytoplasmic actin II and III. We demonstrated that these two recombinant phages, hybridizing preferentially with poly(A)+ RNA of ecdysterone-treated cells, contain the 5 C actin gene. Poly(A)+ RNA prepared from various times of treatment of cells were electrophoresed on agarose gels, transferred to nitrocellulose paper and then hybridized with the cloned actin probe. Results of these experiments indicate that there is a sharp increase in the level of RNA coding for actin after ecdysterone treatment of the cell, and that there are two forms of actin-specific RNA in the D. melanogaster cells. Using genomic blots with specific probes derived from lambda Dm 1632, we show that there are six actin genes per haploid Drosophila cell genome contained on six EcoRI fragments, as in Drosophila embryos, indicating that there is no rearrangement of these sequences in cultured cells. Our results suggest that the expression of actin genes in D. melanogaster Kc 0% cells is modulated by ecdysterone.  相似文献   

7.
8.
9.
10.
Auxin-regulated gene expression   总被引:6,自引:0,他引:6  
During the 1960s a wide range of studies provided an information base that led to the suggestion that auxin-regulated cell processes--especially cell elongation--may be mediated by auxin-regulated gene expression. Indirect evidence from our work, based on the influence of inhibitors of RNA synthesis (e.g. actinomycin D) and of protein synthesis (e.g. cycloheximide) on auxin-induced cell elongation, coupled with correlations of the influence of auxin on RNA synthesis and cell elongation, provided the basis for this suggestion. With the availability of techniques for DNA-DNA and DNA-RNA hybridization, mRNA isolation-translation, in vitro 2D gel analysis of the translation products, and ultimately the cloning by recombinant DNA technologies of genomic DNA and copy DNAs (cDNAs) made to poly(A)+ mRNAs, we and others have provided direct evidence for the influence of auxin on the expression of a few genes (i.e. poly(A)+ RNA levels). Our laboratory has provided evidence for auxin's both down-regulating and up-regulating the level of a few poly(A)+ mRNAs out of a population of about 4 X 10(4) sequences that are not significantly affected by auxin. In our studies on auxin-regulated cell elongation, two cDNA clones (pJCW1 and pJCW2) were isolated which corresponded to poly(A)+ mRNAs that responded during growth transitions in a way consistent with a potential role of their protein products in cell elongation. These mRNAs are most abundant in the elongating zone of the soybean hypocotyl. Upon excision and incubation in the absence of auxin, these mRNAs deplete in concert with a decreasing rate of cell elongation. Addition of auxin to the medium results in both increased levels of these mRNAs and enhanced rates of cell elongation. These mRNAs do not deplete if auxin is added to the medium at the onset of excised incubation, and cell elongation rates remain high. We have isolated and sequenced genomic clones that are homologous to these cDNAs. Of the two genes sequenced, both genes are members of small multigene families. There are regions of high amino acid homology even though the nucleotide sequences are sufficiently different in these regions for cross-hybridization of the clones not to be observed. More recently others, especially Guilfoyle's laboratory, have shown that auxin selectively and rapidly influences the level of certain mRNAs and proteins. We have worked on other gene systems such as ribosomal proteins and possible cell wall proteins that are responsive to auxin; again the nature of regulation of expression of these genes is not known.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
13.
14.
RNA was extracted from polysomes of sea urchin mesenchyme blastulas and fractionated by affinity chromatography on oligo(dT)-cellulose. The poly(A)+ and poly(A)? fractions were translated in cell-free systems derived from wheat germ and rabbit reticulocytes. The translation products were analyzed by two-dimensional electrophoresis on polyacrylamide gels and found to be qualitatively similar for poly(A)+ and poly(A)? mRNA. Most of the products of cell-free translation have been identified among the in vivo translation products, indicating the fidelity of the translation systems. At least 85% of the poly(A)? mRNA lacks detectable (8 nucleotides or longer) tracts of poly(A). Less than 11% of the poly(A)? mRNA entering polysomes in the reticulocyte lysate contains detectable homopolymers of adenosine. We conclude that the poly(A)+ and poly(A)? mRNA code for the same set of abundant proteins, having isoelectric points between 5 and 7.2 and molecular weights between 15,000 and 100,000. It is possible that some proteins, such as histones, not detectable in our analysis are coded for exclusively by mRNA having or lacking poly(A) tracts.  相似文献   

15.
16.
17.
Polyadenylated mRNA has been purified from a variety of human and mouse cell sources. These preparations are actively translated in the wheat germ cell-free system but have only poor ability to stimulate the nuclease-treated reticulocyte lysate. The translation of endogenous and exogenous globin mRNA is strongly inhibited by the poly(A)+ RNA preparations in reticulocyte lysates. Both polysomal and non-polysomal RNA have similar effects but poly(A)+ RNA is almost 2000-fold more inhibitory than poly(A)-RNA on a weight basis. The inhibition is abolished in the presence a high concentration of poly(I).poly(C). Analysis of endogenous eIF-2 in the lysate reveals that the subunit becomes extensively phosphorylated in the presence of the inhibitory poly(A)+ RNA. Prolonged incubation of lysate with poly(A)+ RNA also causes some nucleolytic degradation of polysomal globin mRNA. These characteristics suggest that some eukaryotic cell mRNAs contain regions of double-stranded structure which are sufficiently extensive to activate translational control mechanisms in the reticulocyte lysate.  相似文献   

18.
Lung cancer is a leading cause of cancer death worldwide. Several alterations in RNA metabolism have been found in lung cancer cells; this suggests that RNA metabolism-related molecules are involved in the development of this pathology. In this study, we searched for RNA metabolism-related genes that exhibit different expression levels between normal and tumor lung tissues. We identified eight genes differentially expressed in lung adenocarcinoma microarray datasets. Of these, seven were up-regulated whereas one was down-regulated. Interestingly, most of these genes had not previously been associated with lung cancer. These genes play diverse roles in mRNA metabolism: three are associated with the spliceosome (ASCL3L1, SNRPB and SNRPE), whereas others participate in RNA-related processes such as translation (MARS and MRPL3), mRNA stability (PCBPC1), mRNA transport (RAE), or mRNA editing (ADAR2, also known as ADARB1). Moreover, we found a high incidence of loss of heterozygosity at chromosome 21q22.3, where the ADAR2 locus is located, in NSCLC cell lines and primary tissues, suggesting that the downregulation of ADAR2 in lung cancer is associated with specific genetic losses. Finally, in a series of adenocarcinoma patients, the expression of five of the deregulated genes (ADAR2, MARS, RAE, SNRPB and SNRPE) correlated with prognosis. Taken together, these results support the hypothesis that changes in RNA metabolism are involved in the pathogenesis of lung cancer, and identify new potential targets for the treatment of this disease.  相似文献   

19.
As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号