首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Poly (2'-chloro-2'-deoxyinosinic acid) [poly(Icl)] was synthesized from Icl 5'-DP by polymerization with polynucleotide phosphorylase. UV absorption properties of poly(Icl) are very similar to those of poly(I). Poly(Icl) adopted a multi-stranded ordered form in the presence of 0.95M Na ion. The Tm value of this form was 36 degrees, which resembles that of poly(I) quadruple-stranded form at high salt. CD spectra also suggested presence of these two forms. Upon mixing with poly(C), poly-(Icl) forms a double-stranded 1 : 1 complex, which had very similar Tm-log[Na+] relationship to that of poly(I) . poly(C). Thus it was concluded that the chlorine substitution at 2'-position of the polynucleotide had the similar effect to OH on physical properties of polynucleotides.  相似文献   

3.
4.
Poly 7-deazainosinic acid has been prepared by the deamination and phosphorylation of tubercidin and the nucleoside diphosphate was polymerised using polynucleotide phosphorylase. The polymer has similar physical properties to poly(I), but has a low thermal stability in the double-stranded complex with poly(C). Poly(7-deaza I), in contrast, forms a more stable triple-stranded complex with poly(A) than 2 poly(I). poly(A), presumably due to the higher pK value.  相似文献   

5.
Poly (2'-amino-2'-deoxyadenylic acid) [poly (Aa)] was prepared from chemically synthesized 2'-amino-2'-deoxy-ADP by the catalysis of polynucleotide phosphorylase. Poly (Aa) showed a similar UV absorption spectra to poly (A), but quite different CD spectra at pH 7.0 and 5.7. At the former pH it showed a single negative Cotton band and at the latter a curve with a large splitting of bands. Acid titration of poly (Aa) suggested protonated form below pH 7.0. Temperature absorption profiles and their dependency on sodium ion concentration suggested an ordered structure for poly (Aa) which is stabilized by stacking of bases and intrastrand interaction between 2'-amino and internucleotidic phosphate groups. Poly (Aa) forms a 1:2 complex with poly (U) at neutrality and its Tm was 45 degrees in the presence of 0.15M sodium ion.  相似文献   

6.
Poly (2'-deoxy-2'-fluoroinosinic acid) [ poly(If)] was synthesized by polymerization of 2'-deoxy-2'-fluoroinosine 5'-diphosphate catalyzed by Escherichia coli polynucleotide phosphorylase. Although the UV absorption properties of poly(If) closely resembled those of poly(I), thermal melting curves at Na+ concentrations of 0.15M and 0.75M suggested two ordered structures for poly(If) neutral form. CD psectra taken at 0.15M Na+ concentration showed rather larger amplitudes in both a peak at 273 nm and a trough at 246 nm, suggesting rather strong vertical stacking of bases. When complexed with poly(C), poly(If) forms a double-stranded complex, poly(If).poly(C) which has Tm's higher by 10-20 degrees than those of poly(If).poly(C) measured under the same conditions. The CD spectrum of this complex resembled that of poly(I).poly(C). The effect of the fluorine atom at the 2'-position on thermal stability of polynucleotides is discussed.  相似文献   

7.
Chemically synthesized 2-azaadenosine 5'-diphosphate (n2ADP) and 2-azainosine 5'-diphosphate (n2IDP) were polymerized to yield poly(2-azaadenylic acid), poly(n2A), and poly(2-azainosinic acid), poly(n2I), using Escherichia coli polynucleotide phosphorylase. In neutral solution, poly(n2A) and poly(n2I) had hypochromicities of 32 and 5.5%, respectively. Poly(n2A) formed an ordered structure, which had a melting temperature (Rm) of 20 degrees C at 0.15 M salt concentration. Upon mixing with poly(U), poly(n2A) formed a 1 : 2 complex with Tm of 41 degrees C at 0.15 M salt concentration. Poly(n2A) and poly(n2I) formed three-stranded complexes with poly(I), and poly(A), respectively. Poly(n2A) . 2poly(I), poly(A) . 2poly(n2I), and poly(n2A) . 2poly(n2I) complexes had Tm values of 23, 48, and 31 degrees C at 0.15 M salt concentration, respectively. Poly(n2I) formed a double-stranded complex with poly(C), but its Tm was very low.  相似文献   

8.
Jean Sturm 《Biopolymers》1982,21(6):1189-1206
A temperature-jump relaxation study of the interaction of tilorone with different polynucleotides and DNA has been performed. A single relaxation time, attributed to the intercalation step, has been observed in the case of poly[d(A-T)]·poly[d(A-T)], poly[d(A-C)]·poly[d(G-T)], poly[d(G-C)]·poly[d(G-C)], and poly(dG)·poly(dC). No intercalation into poly(dA)·poly(dT) occurs, and the interaction with poly(dG)·poly(dC) is different from what is observed with the other intercalating homopolymers. Refinement of the binding model is suggested from the analysis of the kinetic data. The relaxation curves obtained with DNA are well simulated based on a binding mechanism where DNA is considered a heterogeneous lattice and each type of site behaves as if it were located in the corresponding homopolymer. Poly(dA)·poly(dT) shows a unique behavior: studies of the effects of concentration and temperature indicate that tilorone acts as a probe of a process involving the polynucleotide alone. This process appears to be related to the dynamic structure of the nucleic acid and is detectable only when the bound dye is not intercalated.  相似文献   

9.
Poly (2'-azido-2'-deoxyinosinic acid), [poly (Iz)], was synthesized from 2'-azido-2'-deoxyinosine diphosphate by the action of polynucleotide phosphorylase. Poly (Iz) has UV absorption properties similar to poly (I) and hypochromicity of 11% at 0.15M Na+ and neutrality. In solutions of high Na+ ion concentration, poly (Iz) forms a multi-stranded complex and its Tm at 1.0M Na+ ion concentration was 43 degrees. Upon mixing with poly (C), poly (Iz) forms a 1:1 complex having a Tm lower than that of poly (I)-poly (C) complex in the same conditions. The effect of substitution at the 2'-position of the poly (I) strand was discussed in relation to the interferon-inducing activity.  相似文献   

10.
The alpha-form of poly[d(A)].poly[d(T)], observed in fibers at high (greater than 80%) relative humidity, is a 10-fold double-helical structure of pitch 3.2 nm. This new X-ray analysis shows that the two strands of the double helix are of the same kind conformationally and both B-like in containing C-2'-endo-puckered deoxyribose rings. Nevertheless, the two strands are different enough for the overall morphology of the duplex to resemble that of the heteromerous model for the drier (beta) form of poly[d(A)].poly[d(T)] in which one strand has C-2'-endo rings and the other C-3'-endo. Since the orientations of the bases in poly[d(A)].poly[d(T)] are persistently different from those of classical B-DNA it is likely that there will be local bending (about 10 degrees) at the junctions between general sequence tracts and the oligo[d(A)].oligo[d(T)] tracts that occur in some native DNAs. The conclusions about the structure of alpha-poly[d(A)].poly[d(T)] are reinforced by independent analyses of similar X-ray diffraction patterns from poly[d(A)].poly[d(U)] and poly[d(A-I)].poly[d(C-T)].  相似文献   

11.
Circular dichroism and UV absorption data showed that poly[d(A-C).d(G-T)] (at 0.01M Na+ (phosphate), 20 degrees C) underwent two reversible conformational transitions upon lowering of the pH. The first transition was complete at about pH 3.9 and resulted in an acid form of the polymer that was most likely a modified, protonated duplex. The second transition occurred between pH 3.9 and 3.4 and consisted of the denaturation of this protonated duplex to the single strands. UV absorption and CD data also showed that the separated poly[d(A-C)] strand formed two acid-induced self-complexes with pKa values of 6.1 and 4.7 (at 0.01M Na+). However, neither one of these poly[d(A-C)] self-complexes was part of the acid-induced rearrangements of the duplex poly[d(A-C).d(G-T)]. Acid titration of the separated poly[d(G-T)] strand, under similar conditions, did not show the formation of any protonated poly[d(G-T)] self-complexes. In contrast to poly[d(A-C).d(G-T)], poly[d(A-T).d(A-T)] underwent only one acid-induced transition, which consisted of the denaturation of the duplex to the single strands, as the pH was lowered from 7 to 3.  相似文献   

12.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

13.
The interaction of tilorone with DNA and five synthetic polydeoxyribonucleotides [(I): poly[d(A-T)]·poly[d(A-T)]; (II): poly[d(A-C)]·poly[d(G-T)]; (III): poly[d(G-C)]·poly[d(G-C)]; (IV): poly(dG)·poly(dC); and (V): poly(dA)·poly(dT)] has been investigated. Binding isotherms for the homopolymers were obtained by microdialysis equilibria using 14C-labeled tilorone and interpreted with different models: exclusion effect, associated or not associated with cooperativity, or variable exclusion. Affinity appears to be related more to local structure than to base composition and decreases in the following order: (I) > (II) > (III) > (IV) > (V). Intercalation in circular DNA was demonstrated by electrophoresis migration and electron microscopy, which yielded an average unwinding angle of 7° per bound dye. The behavior observed in CD and UV spectroscopy shows a sequence similar to the affinities. Tilorone seems to be less intercalated in (IV) and not at all in (V). The experimental binding isotherm of tilorone to DNA was well fitted on the basis of a model where DNA acts as a heterogeneous lattice built with the six different possible couples of adjacent base pairs, each potential site behaving as if it were in the corresponding homopolymer. The results are discussed in terms of specificity of alternating Pyr-Pur sequences and related to theoretical calculations on intercalation energies of DNA.  相似文献   

14.
Poly(2-amino-8-methyldeoxyadenylic acid) interacts readily with pyrimidine polynucleotides to form double helices only slightly less stable than those in which the purine polymer lacks the 8-Me group. In the ribo series, by contrast, complexes formed with poly(2-amino-8-methyladenylic acid) are very strongly destabilized by the 8-Me group, despite a larger stabilizing effect of the 2-NH2 group in the ribo series. These results are interpreted in terms of a smaller steric interference of the 8-Me group with 2'-CH2 than with 2'-CHOH, leading to a smaller population of syn structures in the deoxy chain and a consequent lower interference with homopolymer duplex formation. UV, circular dichroism (CD), and IR spectra of the new polymer and its complexes are reported and related to structural and energetic characteristics of the molecules. Since direct synthesis of 2-amino-8-methyldeoxyadenosine was not feasible, the corresponding riboside was prepared, the 3'- and 5'-positions were protected with a disilyloxy group, and a 2'-[(imidazol-1-yl)thiocarbonyl] group was introduced. Reduction with tributyltin hydride followed by deprotection gave the nucleoside, which was then converted to the triphosphate by standard methods. The homopolymer was prepared with terminal deoxynucleotidyl transferase.  相似文献   

15.
This study was undertaken to determine the effect of delta 9-tetrahydrocannabinol (delta 9-THC) on polyinosinic:polycytidylic acid [poly(I):poly(C)]-induced, and on herpes simplex virus type 2 (HSV-2)-induced, alpha/beta interferon in the B6C3F1 mouse. Animals were administered delta 9-THC, or the diluent, intraperitoneally for 4 consecutive days or at various time intervals prior to administration of the interferon inducer. Poly(I):poly(C) or HSV-2 was injected intravenously on Day 4. Animals receiving poly(I):poly(C) and treated with delta 9-THC at doses ranging from 5 to 100 mg/kg exhibited significantly lower titers of interferon than mice given poly(I):poly(C) and the diluent. Diminished interferon titers occurred in HSV-2-infected animals treated with delta 9-THC in doses exceeding 15 mg/kg when compared to virus-infected animals given the diluent. This suppression of early interferon persisted through 24 hr.  相似文献   

16.
We have been unable to "force" double-stranded RNA to fold into nucleosome-like structures using several different histone-RNA "reconstitution" procedures. Even if the histones are first stabilized in octameric form by dimethylsuberimidate cross-linking they are still unable to form specific complexes with the RNA. Moreover double-stranded RNA is unable to induce histones to assemble into octamers although we confirm that the non-nucleic acid homopolymer, polyglutamic acid, has this ability. We have also determined, using pyrimidine tract analysis, that nucleosomes will not form over a sufficiently long segment of poly(dA).poly(dT) in a recombinant DNA molecule. Thus nucleosomes cannot fold DNA containing an 80 base pair poly(dA).poly(dT) segment but a 20 base pair segment can be accommodated in nucleosomes fairly well. Segments of intermediate length can be accommodated but are clearly selected against. Poly(dA).poly(dT) differs only slightly from natural DNA in helix structure. Therefore either this homopolymer resists folding, or nucleosomes are very exacting in the nucleic acid steroid parameters they will tolerate. Such constraints may be relevant to nucleosome positioning in chromatin.  相似文献   

17.
F Seela  J Ott    D Franzen 《Nucleic acids research》1982,10(4):1389-1397
Poly(adenylic acids) containing the antibiotic tubercidin (7-deazaadenosine) form double strands with poly(uridylic acid) by Watson-Crick base pairing. The stability of these complexes is enhanced by an increasing adenosine content of the polymers. Whereas poly(tubercidylic acid) can bind only one poly(U) chain, the copolymers of adenylic and tubercidylic acid bind a second strand of poly(U). The melting temperatures imply a triple strand formation in a similar geometry as found for poly(A).2poly(U). The diminished hypochromicity of those complexes suggests semi-Hoogsteen base pairs, caused by the lack of N-7 in the antibiotic. As found for poly(A).poly(U), the double-stranded poly(Tu).poly(U) is not hydrolyzed by nuclease S1. In contrast to the four regular homopolyribonucleotides the single-stranded poly(Tu) is cleaved very rapidly. This may be due to a great flexibility of the polynucleotide chain. Moreover TuMP does not inhibit the enzymic digestion. Both phenomena imply a mechanism for the antibiotic action of tubercidin on the polymer level.  相似文献   

18.
H T Steely  Jr  D M Gray    R L Ratliff 《Nucleic acids research》1986,14(24):10071-10090
CD spectra and difference-CD spectra of (a) two DNA X RNA hybrid duplexes (poly[r(A) X d(U)] and poly[r(A) X d(T)]) and (b) three hybrid triplexes (poly-[d(T) X r(A) X d(T)], poly[r(U) X d(A) X r(U)], and poly[r(T) X d(A) X r(T)]) were obtained and compared with CD spectra of six A X U- and A X T-containing duplex and triplex RNAs and DNAs. We found that the CD spectra of the homopolymer duplexes above 260 nm were correlated with the type of base pair present (A-U or A-T) and could be interpreted as the sum of the CD contributions of the single strands plus a contribution due to base pairing. The spectra of the duplexes below 235 nm were related to the polypurine strands present (poly-[r(A)] or poly[d(A)]). We interpret the CD intensity in the intermediate 255-235 nm region of these spectra to be mainly due to stacking of the constituent polypurine strands. Three of the five hybrids (poly[r(A) X d(U)], poly[r(A) X d(T)], and poly[d(T) X r(A) X d(T)]) were found to have heteronomous conformations, while poly[r(U) X d(A) X r(U)] was found to be the most A-like and poly[r(T) X d(A) X r(T)], the least A-like.  相似文献   

19.
Preparation and properties of poly 2''-O-ethylcytidylic acid.   总被引:1,自引:1,他引:0       下载免费PDF全文
Poly 2'0-ethylcytidylic acid (poly (Ce)) was prepared by polymerization of 2'-0-ethylcytidine-5'-pyrophosphate with Escherichia coli polynucleotide phosphorylase in the presence of Mn++, and its properties compared with those of poly (rC), poly (Cm) and poly (dC). The neutral form of pOLY (Ce) exhibits properties similar to those of poly (rC) and poly (Cm). It also forms an acid twin-stranded helix with a transition pH of 5.9 in 0.1 M NaCl. The neutral form readily forms a double-stranded helical complex with poly (rI). Relative to poly (Cm), replacement of the 2'-0-methyl by 2-0-ethyl leads to increased enhancement of the thermal stabilities of both the acid helical form of poly (Ce) and its complex with poly (rI).  相似文献   

20.
Synthetic double-stranded polydeoxynucleotides of the general form poly[d(AnT).d(ATn)], with n ranging from 3 to 11, have been synthesized. The conformation of the polymers was investigated by circular dichroism spectroscopy and the polymers were examined for their ability to form nucleosomes. Although spectra show that a circular dichroism band characteristic of poly[d(A.T)] appears in the polymer family for n greater than 7, we demonstrate that even polynucleotides with the longest tracts of contiguous adenosine bases (n = 11) are able to form nucleosomes when reconstituted using a histone exchange procedure. Thus resistance to nucleosome formation does not coincide with the appearance of features similar to that of poly[d(A.T)] over the bulk of the nucleosomal DNA. Furthermore, we show that an approximately 150 base-pair poly[d(A.T)] itself, long thought to be refractory to nucleosome formation, can assemble into such a protein-DNA complex when reconstituted by a low-salt exchange procedure. Competitive assays show that the homopolymer reconstitutes about as well as heterogeneous sequences DNA. Our work, therefore, suggests that highly adenosine-rich sequences in vivo apparently have a function that operates at a level other than that of nucleosome structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号