首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The 2-acetyl-1-pyrroline (2AP) induced ‘basmati rice’ aroma is plausibly the highest among the plant kingdom in Pandanus amaryllifolius Roxb. The defective/truncated allelic forms of betaine aldehyde dehydrogenase (BADH2) gene is the major contributing factor behind the accumulation of this fragrance. The present study reports the isolation and characterization of the full-length BADH2 gene from P. amaryllifolius Roxb. The in silico analysis involving homology modelling and docking studies revealed the deficiency in catalytic efficiency of Pandanus BADH2 towards its substrate γ-aminobutyraldehyde (GAB-ald) as compared to the functional BADH2 gene of rice. We have also studied the tissue-specific expression of the BADH2 gene in different plant parts of in vivo donor and in vitro propagated P. amaryllifolius Roxb. In addition to the leaves, we are reporting histochemical localization of 2AP for the first time in the roots of P. amaryllifolius.  相似文献   

3.
4.
As determined by computer sequence analysis, the average exon length in Arabidopsis thaliana, Oryza sativa, Caenorhabditis elegans, and Homo sapiens genes decreases with an increasing number of introns. In A. thaliana and O. sativa, variations in intron and exon lengths with an increasing number of introns are highly correlated. Linear correlation is observed between the total exon length and the number of introns, while the gene length increases in proportion to the number of introns. In human, the average intron and gene lengths depended on the gene density in DNA.  相似文献   

5.
In this study, the chloroplast genome of Hariotina reticulata was fully sequenced and compared to other Sphaeropleales chloroplast genomes. It is 210,757 bp larger than most Sphaeropleales cpDNAs. It presents a traditional chloroplast structure, and contains 103 genes, including 68 protein-coding genes, six rRNA genes and 29 tRNA genes. The coding region constitutes of 43% of the whole cpDNA. Eighteen introns are found in 11 genes and six introns are unique for Hariotina. 11 open reading frames are identified among these introns. The synteny between Hariotina and Acutodesmus cpDNAs is in general identical, while within Sphaeropleales order, high variability in cpDNA architecture is indicated by general high DCJ distances. Ankyra judayi exhibits the greatest dissimilarity in gene synteny to the others and share some unique gene clusters with Treubaria triappendiculata. The phylogenomic analyses show that A. judayi is clustered with Treubariaceae species and sister to Chlorophyceae incertae sedis and other Sphaeropleales species. The monophyly of Sphaeropleales is rejected.  相似文献   

6.
7.
Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.  相似文献   

8.
Analysis of the structural polymorphism of eight genes in Sinorhizobium meliloti (nodA, nodB, nodC, and nodH, as well as betA, betB, betC, and betB2) involved in virulence control and salt tolerance, respectively, was carried out in native populations from two geographically distant areas of alfalfa diversity. These areas are located in the North Caucasian gene center of cultivated plants (NCG) and in the modern center of introgressive hybridization of alfalfa located next to the Aral Sea area (PAG) subjected to salinization. RFLP types (alleles) of the nod and bet genes, similar to those in the reference strain Rm1021 (A-type) and different from them (divergent, or D-type alleles) were revealed. The combinations for A- and D-type alleles of the aforementioned genes (analysis of the linkage disequilibrium, LD) were studied in both populations. It was shown that D-type alleles of the nod genes were two times more frequent in the NCG population, while D-type alleles of the bet genes were predominantly identified in the PAG population. At the same time, different combinations of D-type alleles of both the nod and bet genes prevailed in populations. For instance, in the case of the glycine betaine metabolism pathway, these were the betC and betB2 genes in NCG population and betB and betA genes in PAG population. The state of linkage disequilibrium was shown for 60.7% of combinations of alleles of the nod and bet genes in the S. meliloti strains from NCG and more than twice less in strains from the PAG population. It was concluded that clonal lines prevailed in NCG, while the PAG population of S. meliloti had a panmictic structure with revealed single clonal lines.  相似文献   

9.
10.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

11.
Enzymes of the chalcone synthase (CHS) family catalyze the generation of multiple secondary metabolites in fungi, plants, and bacteria. These metabolites have played key roles in antimicrobial activity, UV protection, flower pigmentation, and pollen fertility during the evolutionary process of land plants. We performed a genome-wide investigation about CHS genes in rice (Oryza sativa). The phylogenetic relationships, gene structures, chromosomal locations, and functional predictions of the family members were examined. Twenty-seven CHS family genes (OsCHS0127) were identified in the rice genome and were found to cluster into six classes according to their phylogenetic relationships. The 27 OsCHS genes were unevenly distributed on six chromosomes, and 17 genes were found in the genome duplication zones with two segmental duplication and five tandem duplication events that may have played key roles in the expansion of the rice CHS gene family. In addition, the OsCHS genes exhibited diverse expression patterns under salicylic acid treatment. Our results revealed that the OsCHS genes exhibit both diversity and conservation in many aspects, which will contribute to further studies of the function of the rice CHS gene family and provide a reference for investigating this family in other plants.  相似文献   

12.
In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out. Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serA Δ197 , serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.  相似文献   

13.
Stress-associated proteins (SAPs) are a novel class of zinc finger proteins that extensively participate in abiotic stress responses. To date, no overall analysis and expression profiling of SAP genes in woody plants have been reported. Populus euphratica is distributed in desert regions and is extraordinarily adaptable to abiotic stresses. Thus, it is regarded as a promising candidate for studying abiotic stress resistance mechanisms of woody plants. In this study, 18 non-redundant SAP genes were identified from the genome of P. euphratica using basic local alignment search tool algorithms and functional domain verification. Among these 18 PeuSAP genes, 15 were intronless. To investigate the evolutionary relationships of SAP genes in P. euphratica and other Salicaceae plants, phylogenetic analyses were performed. Subsequently, the expression profiles of the 18 PeuSAP genes were analyzed in different tissues and under various stresses (drought, salt, heat, cold, and abscisic acid (ABA) treatment) using quantitative real-time PCR. Tissue expression analysis indicated that PeuSAPs showed no tissue specificity. PeuSAPs were induced by multiple abiotic stresses, especially drought, salt, and heat stresses, perhaps because of abundant cis-acting heat shock elements and drought-inducible elements in the promoter regions of the PeuSAPs. Moreover, single nucleotide polymorphisms (SNPs) variant analysis revealed many synonymous and non-synonymous SNPs in PeuSAP genes, but the zinc finger structure was conserved during evolution. These results provide an overview of the SAP gene family in P. euphratica and a reference for further functional research on PeuSAP genes.  相似文献   

14.
Artemisinin, isolated from an annual herbaceous plant Artemisia annua L., is an effective antimalarial compound. However, artemisinin is accumulated in small amounts (0.01–0.1% leaf dry weight) in A. annua, resulting in constant high artemisinin price. Although metabolic engineering of partial artemisinin metabolic pathway in yeast achieved great success, artemisinin from A. annua is still the important business resource. Here, we report on the generation of transgenic plants with simultaneously overexpressing four artemisinin biosynthetic pathway genes, amorpha-4,11-diene synthase gene (ADS), amorpha-4,11-diene 12-monooxygenase gene (CYP71AV1), cytochrome P450 reductase gene (CPR), and aldehyde dehydrogenase 1 gene (ALDH1) via Agrobacterium-mediated transformation. The qRT-PCR analysis demonstrated that the introduced four genes of the transgenic lines were all highly expressed. Through high-performance liquid chromatography analysis, the artemisinin contents were increased markedly in transformants, with the highest being 3.4-fold higher compared with non-converter. These results indicate that overexpression of multiple artemisinin biosynthetic pathway genes is a promising approach to improve artemisinin yield in A. annua.  相似文献   

15.
16.
FK506-binding proteins (FKBPs), which belong to the peptidyl-prolyl cis/trans isomerase superfamily, are involved in plant response to abiotic stresses. A number of FKBP family genes have been isolated in plants, but little has been reported of FKBP genes in maize. In this study, a drought-induced FKBP gene, ZmFKBP20-1, was isolated from maize and was characterized for its role in stress responses using gene expression, protein subcellular localization, transformation in Arabidopsis, expression patterns of the stress-responsive genes, and physiological parameter analysis. During drought and salt stresses, ZmFKBP20-1 transgenic Arabidopsis plants exhibited enhanced tolerance, which was concomitant with the altered expression of stress/ABA-responsive genes, such as COR15a, COR47, ERD10, RD22, KIN1, ABI1, and ABI2. The resistance characteristics of ZmFKBP20-1 overexpression were associated with a significant increase in survival rate. These results suggested that ZmFKBP20-1 plays a positive role in drought and salt stress responses in Arabidopsis and provided new insights into the mechanisms of FKBP in response to abiotic stresses in plants.  相似文献   

17.
The H+-pyrophosphatase (H +-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H +-PPase gene ScHP1 in rye (Secale cereale L. ‘Qinling’). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H +?PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H +-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.  相似文献   

18.
Choline monooxygenase (CMO) is a key enzyme involved in betaine synthesis and our preliminary work has shown that the SlCMO gene promoter (pC5: ??267 to +?128 base pair), cloned from Suaeda liaotungensis, is salt-inducible. In the present study, pC5-SlCMO was transferred into tomato (Solanum lycopersicon L. ‘Micro-Tom’) plants via Agrobacterium mediation. Homozygous transgenic plants were selected using quantitative real-time polymerase chain reaction. The expression of SlCMO in pC5-SlCMO transgenic plants was induced by salinity. Under salt tolerance, betaine content, chlorophyll content, and net photosynthetic rate were higher in transgenic plants than in wild-type (WT) plants. Proline content was lower in transgenic plants than in WT plants. Under normal conditions, seed germination, length of the whole plant, dry weight, and fruit products of transgenic plants were the same as in WT plants. These results demonstrated that the pC5 promoter can drive increased expression of SlCMO in transgenic tomato plants under salt stress and increase salt tolerance without affecting plant growth and yield.  相似文献   

19.
20.
Dicer, Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) comprise the core components of RNA-induced silencing complexes, which trigger RNA silencing. Here, we performed a complete analysis of the cucumber Dicer-like, AGO, and RDR gene families including the gene structure, genomic localization, and phylogenetic relationships among family members. We identified seven CsAGO genes, five CsDCL genes, and eight CsRDR genes in cucumber. Based on phylogenetic analysis, each of these genes families was categorized into three or four clades. The orthologs of CsAGOs, CsDCLs, and CsRDRs were identified in apple, peach, wild strawberry, foxtail millet, and maize, and the evolutionary relationships among the orthologous gene pairs were investigated. We also investigated the expression levels of CsAGOs, CsDCLs, and CsRDRs in various cucumber tissues. All CsAGOs were relatively higher upregulated in leaves and tendrils than in other organs, especially CsAGO1c, CsAGO1d, and CsAGO7. All CsDCL genes were relatively higher upregulated in tendrils, with almost no expression detected for CsDCL1, CsDCL4a, or CsDCL4b in other organs. In addition, CsRDR1a, CsRDR2, CsRDR3, and CsRDR6 had relatively higher upregulation in tendrils, whereas almost all CsRDRs were downregulation in other organs. The results of this study will facilitate further studies of gene silencing pathways in cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号