首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop.  相似文献   

2.
In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.  相似文献   

3.

Background and aims

Soil drying leads to the generation of chemical signals in plants that regulate water use via control of the stomatal aperture. The aim of our work was to identify the presence and identity of potential chemical signals, their dynamics, and their relationship with transpiration rate during soil drying in hop (Humulus lupulus (L.)) plants.

Methods

We used pressure chamber technique for measurement of shoot water potential and collection of shoot xylem sap. We analyzed concentrations of abscisic acid (ABA), nitrate, phosphate, sulphate and malate in sap and also the rate of whole plant transpiration.

Results

Transpiration rate decreased prior to changes in shoot water potential. The concentration of ABA in xylem sap continuously increased from early to later stages of water stress, whereas in leaves it increased only at later stages. Shoot sap pH increased simultaneously with the decrease of transpiration rate. Xylem sap alkalization was in some cases accompanied by a decrease in nitrate concentration and an increase in malate concentration. Concentration of sulphate increased in xylem sap during drying and sulphate in combination with a higher ABA concentration enhanced stomatal closure.

Conclusions

Several early chemical signals appear in sap of hop plants during soil drying and their impact on transpiration may vary according to the stage of soil drying.  相似文献   

4.
The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.  相似文献   

5.
The mechanisms regulating stomatal response following exposure to low (5°C) soil temperature were investigated in aspen ( Populus tremuloides Michx.) seedlings. Low soil temperature reduced stomatal conductance within 4 h, but did not alter shoot xylem pressure potential within 24 h. The xylem sap composition was altered and its pH increased from 6.5 to 7.1 within the initial 4 h of the low temperature treatment. However, the increase in abscisic acid (ABA) concentration in xylem sap was observed later, after 8 h of treatment. These changes were accompanied by a reduction in the electrical conductivity and an increase in the osmotic potential of the xylem sap. The timing of physiological responses to low soil temperature suggests that the rapid pH change of the xylem sap and accompanying changes in ion concentration were the initial factors which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. When leaf discs were exposed to xylem sap extracted from low soil temperature-treated plants, stomatal aperture was negatively correlated with ABA and positively correlated with K+ concentrations of the xylem sap. The stomatal opening in the leaf discs linearly increased in response to exogenous KCl concentrations when K+ concentrations were in the similar range to those detected in the xylem sap. The lowest concentration of exogenous ABA to induce stomatal closure was several-fold higher compared with the concentration present in the xylem sap.  相似文献   

6.
Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant.  相似文献   

7.
We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants.  相似文献   

8.
In this work we investigated the function of abscisic acid (ABA) as a long-distance chemical signal communicating water shortage from the root to the shoot in citrus plants. Experiments indicated that stomatal conductance, transpiration rates, and leaf water potential decline progressively with drought. ABA content in roots, leaves, and xylem sap was also increased by the drought stress treatment three- to sevenfold. The addition of norflurazon, an inhibitor of ABA biosynthesis, significantly decreased the intensity of the responses and reduced ABA content in roots and xylem fluid, but not in leaves. Polyethylene glycol (PEG)-induced osmotic stress caused similar effects and, in general, was counteracted only by norflurazon at the lowest concentration (10%). Partial defoliation was able to diminish only leaf ABA content (22.5%) at the highest PEG concentration (30%), probably through a reduction of the active sites of biosynthesis. At least under moderate drought (3–6 days without irrigation), mechanisms other than leaf ABA concentration were required to explain stomatal closure in response to limited soil water supply. Measurements of xylem sap pH revealed a progressive alkalinization through the drought condition (6.4 vs. 7.1), that was not counteracted with the addition of norflurazon. Moreover, in vitro treatment of detached leaves with buffers iso-osmotically adjusted at pH 7.1 significantly decreased stomatal conductance (more than 30%) as much as 70% when supplemented with ABA. Taken together, our results suggest that increased pH generated in drought-stressed roots is transmitted by the xylem sap to the leaves, triggering reductions in shoot water loss. The parallel rise in ABA concentration may act synergistically with pH alkalinization in xylem sap, with an initial response generated from the roots and further promotion by the stressed leaves.  相似文献   

9.
In this article we review evidence for a variety of long-distance signaling pathways involving hormones and nutrient ions moving in the xylem sap. We argue that ABA has a central role to play, at least in root-to-shoot drought stress signaling and the regulation of functioning, growth, and development of plants in drying soil. We also stress the importance of changes in the pH of the leaf cell apoplast as influenced both by edaphic and climatic variation, as a regulator of shoot growth and functioning, and we show how changes in xylem and apoplastic pH can affect the way in which ABA regulates stomatal behavior and growth. The sensitivity to drought of the pH/ABA sensing and signaling mechanism is emphasized. This allows regulation of plant growth, development and functioning, and particularly shoot water status, as distinct from stress lesions in growth and other processes as a reaction to perturbations such as soil drying.  相似文献   

10.
The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild‐type, a full‐deficient mutant and four under‐producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well‐watered plants; and withholding irrigation on pot‐grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA‐deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild‐type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.  相似文献   

11.
Tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) plants were grown with roots split between two soil columns. After plant establishment, water was applied daily to one (partial root-zone drying-PRD) or both (well-watered control-WW) columns. Water was withheld from the other column in the PRD treatment, to expose some roots to drying soil. Soil and plant water status were monitored daily and throughout diurnal courses. Over 8 d, there were no treatment differences in leaf water potential (psileaf) even though soil moisture content of the upper 6 cm (theta) of the dry column in the PRD treatment decreased by up to 70%. Stomatal conductance (gs) of PRD plants decreased (relative to WW plants) when of the dry column decreased by 45%. Such closure coincided with increased xylem sap pH and did not require increased xylem sap abscisic acid (ABA) concentration ([X-ABA]). Detached leaflet ethylene evolution of PRD plants increased when of the dry column decreased by 55%, concurrent with decreased leaf elongation. The physiological significance of enhanced ethylene evolution of PRD plants was examined using a transgenic tomato (ACO1AS) with low stress-induced ethylene production. In response to PRD, ACO1AS and wild-type plants showed similar xylem sap pH, [X-ABA] and gs, but ACO1AS plants showed neither enhanced ethylene evolution nor significant reductions in leaf elongation. Combined use of genetic technologies to reduce ethylene production and agronomic technologies to sustain water status (such as PRD) may sustain plant growth under conditions where yield would otherwise be significantly reduced.  相似文献   

12.
Increasing the nitrate (N) concentration in the rooting substrate above deficiency decreased stomatal conductance and leaf growth rate compared with sufficient N in maize seedlings (Zea mays L.) growing in drying substrate. Novel effects were detected when N in the non-deficient range was supplied directly to the xylem of detached shoots: concentrations above 2.0 mol m-3 KNO3 reduced transpiration, and concentrations above 12 mol m-3 KNO3 reduced leaf growth rate. Evidence is provided that the novel effects of N on transpiration and growth were mediated by pH-based ABA redistribution. ABA at 0.05 mol m-3, whilst ineffective alone, sensitized leaf growth to increases in KNO3 concentration (from 3.0 mol m-3), and the capacity of higher concentrations of ABA to reduce growth was enhanced by KNO3. Transpiration was sensitively reduced by KNO3, ABA, or buffers adjusted to pH 6.7-7.0 (compared with buffers adjusted to pH 5.0) alone. Nevertheless, a synergistic effect of KNO3 and either ABA or buffers adjusted to pH 6.7-7.0 was observed. Buffers of pH 5.6 supplied to detached shoots alleviated the depression of transpiration caused by 12 mol m-3 KNO3. Buffers adjusted to pH 6.7 increased the sensitivity of growth to KNO3. Xylem sap extracted from intact seedlings growing in drying soil exhibited an initial increase in N concentration, followed by a decrease at progressively lower soil water potentials. The importance for novel N signalling above deficiency is discussed with reference to the generality of fluctuations in soil and xylem N concentration within this range.  相似文献   

13.
PH as a stress signal   总被引:33,自引:0,他引:33  
The pH of the xylem sap of plants experiencing a range of environmental conditions can increase by over a whole pH unit. This results in an increased ABA concentration in the apoplast adjacent to the stomatal guard cells in the leaf epidermis, by reducing the ability of the mesophyll and epidermal symplast to sequester ABA away from this compartment. As a result the guard cell ABA receptors become activated and the stomata close, enabling the plant to retain water. Were it not for the low concentration of ABA ubiquitous to all land plants, the increase in the pH of the apoplast adjacent to the guard cell would induce stomatal widening, and cause excessive water loss. Not only does ABA prevent this potentially harmful phenomenon, but it also converts the pH increase to a signal which can bring about plant protection.  相似文献   

14.
The pH of xylem sap from tomato (Lycopersicon esculentum) plants increased from pH 5.0 to 8.0 as the soil dried. Detached wild-type but not flacca leaves exhibited reduced transpiration rates when the artificial xylem sap (AS) pH was increased. When a well-watered concentration of abscisic acid (0.03 μm) was provided in the AS, the wild-type transpirational response to pH was restored to flacca leaves. Transpiration from flacca but not from wild-type leaves actually increased in some cases when the pH of the AS was increased from 6.75 to 7.75, demonstrating an absolute requirement for abscisic acid in preventing stomatal opening and excessive water loss from plants growing in many different environments.Jones (1980) and Cowan (1982) were the first to suggest that plants can “measure” soil water status independently of shoot water status via the transfer of chemical information from roots to shoots. Dehydrating roots in drying soil synthesize ABA more rapidly than fully turgid tissue, and resultant increases in the ABA concentration of xylem sap flowing toward the still-turgid shoot constitutes a chemical signal to the leaves (for review, see Davies and Zhang, 1991): the xylem vessels give up their contents to the leaf apoplast, thereby increasing the ABA concentration in this compartment. ABA receptors on the external surface of stomatal guard cells respond to the apoplastic ABA concentration (Hartung, 1983; Anderson et al., 1994; but see Schwartz et al., 1994). When bound, the receptors transduce a reduction in guard cell turgor, which leads to stomatal closure (Assmann, 1993). This maintains shoot water potential despite the reduction in soil water availability.Another chemical change related to soil drying in the absence of a reduction in shoot water status is an increase in the pH of the xylem sap flowing from the roots (Schurr et al., 1992). The pH of the xylem and/or apoplastic sap of plants can also change dramatically in response to soil flooding, diurnal or annual rhythms, and mineral nutrient supply (Table (TableI)I) in the absence of concomitant changes in either root or shoot water status. We already know that, like the increase in xylem ABA concentration described above, an increase in xylem pH can also act as a signal to leaves to close their stomata (Wilkinson and Davies, 1997). Since the conditions that affect xylem/apoplastic pH can also affect transpiration (light intensity [Cowan et al., 1982]; soil drying [Davies and Zhang, 1991]; nitrate supply [Clarkson and Touraine, 1994]; soil flooding [Else, 1996]), the possibility exists that the pH change that they induce could be the means by which they alter stomatal aperture. Table IpH changes that occur in plant xylem or apoplastic sap under various conditions It was originally suggested that an increase in xylem sap pH could putatively enhance stomatal closure by changing the distribution of the ABA that is present in all nonstressed plants at a low “background” concentration, without requiring de novo ABA synthesis (Schurr et al., 1992; Slovik and Hartung, 1992a, 1992b). This hypotheses is built on the well-known fact that weak acids such as ABA accumulate in more alkaline compartments (Kaiser and Hartung, 1981). More recently, Wilkinson and Davies (1997) and Thompson et al. (1997) directly demonstrated that increases in xylem sap pH reduced rates of water loss from Commelina communis and tomato (Lycopersicon esculentum) leaves detached from well-watered plants. This was found to be mediated by the relatively low endogenous concentration of ABA (about 0.01 mmol m−3) contained in the xylem vessels and apoplast of these leaves, a concentration of ABA that did not itself affect transpiration at a well-watered sap pH of 6.0. The mechanism by which the combination of high sap pH and such a low concentration of ABA was able to increase the apoplastic ABA concentration sufficiently to close stomata was also elucidated: the mesophyll and epidermis cells of these leaves had a greatly reduced ability to sequester ABA away from the apoplast when the pH of the latter was increased by the incoming xylem sap (Wilkinson and Davies, 1997).In contrast to the indirect ABA-mediated effect of pH on stomata, it was also demonstrated that increasing the pH of the external solution (from 5.0 to 7.0) bathing isolated abaxial epidermis tissue peeled from well-watered C. communis leaves actually increased stomatal aperture (Wilkinson and Davies, 1997). Mechanisms for this direct effect of pH on guard cells have been speculated on by Thompson et al. (1997). If this process were to occur in vivo, environments that increase xylem sap pH could potentially induce excessive water loss from the plants experiencing them, over and above rates of transpiration occurring in unstressed plants. The latter may contain stomata with apertures smaller than the maximum that is possible, even under favorable local conditions. It was assumed that high-pH-induced apoplastic ABA accumulation in C. communis in vivo was sufficient to override the direct stomatal opening effect seen in the isolated tissue (Wilkinson and Davies, 1997). To test these possibilities, effects of pH on transpiration rates from leaves of the flacca mutant of tomato were investigated. flacca does not synthesize ABA as efficiently as wild-type tomato (Parry et al., 1988; Taylor et al., 1988). It contains a very low endogenous ABA concentration (Tal and Nevo, 1973), although it retains the ability to respond to an application of this hormone (Imber and Tal, 1970). The results demonstrate not only that ABA mediates high xylem sap pH-induced stomatal closure but also that it is necessary to prevent high xylem sap pH-induced stomatal opening and dangerously excessive water loss.  相似文献   

15.
We address the question of how soil flooding closes stomata of tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants within a few hours in the absence of leaf water deficits. Three hypotheses to explain this were tested, namely that (a) flooding increases abscisic acid (ABA) export in xylem sap from roots, (b) flooding increases ABA synthesis and export from older to younger leaves, and (c) flooding promotes accumulation of ABA within foliage because of reduced export. Hypothesis a was rejected because delivery of ABA from flooded roots in xylem sap decreased. Hypothesis b was rejected because older leaves neither supplied younger leaves with ABA nor influenced their stomata. Limited support was obtained for hypothesis c. Heat girdling of petioles inhibited phloem export and mimicked flooding by decreasing export of [14C]sucrose, increasing bulk ABA, and closing stomata without leaf water deficits. However, in flooded plants bulk leaf ABA did not increase until after stomata began to close. Later, ABA declined, even though stomata remained closed. Commelina communis L. epidermal strip bioassays showed that xylem sap from roots of flooded tomato plants contained an unknown factor that promoted stomatal closure, but it was not ABA. This may be a root-sourced positive message that closes stomata in flooded tomato plants.  相似文献   

16.
How Do Stomata Read Abscisic Acid Signals?   总被引:22,自引:2,他引:20       下载免费PDF全文
When abscisic acid (ABA) was fed to isolated epidermis of Commelina communis L., stomata showed marked sensitivity to concentrations of ABA lower than those commonly found in the xylem sap of well-watered plants. Stomata were also sensitive to the flux of hormone molecules across the epidermal strip. Stomata in intact leaves of Phaseolus acutifolius were much less sensitive to ABA delivered through the petiole than were stomata in isolated epidermis, suggesting that mesophyll tissue and/or xylem must substantially reduce the dose or activity of ABA received by guard cells. Delivery of the hormone to the leaf was varied by changing transpiration flux and/or concentration. Varying delivery by up to 7-fold by changing transpiration rate had little effect on conductance. At a given delivery rate, variation in concentration by 1 order of magnitude significantly affected conductance at all but the highest concentration fed. The results are discussed in terms of the control of stomatal behavior in the field, where the delivery of ABA to the leaf will vary greatly as a function of both the concentration of hormone in the xylem and the transpiration rate of the plant.  相似文献   

17.
We studied the effects of drought on leaf conductance (g) and on the concentration of abscisic acid (ABA) in the apoplastic sap of Lupinus albus L. leaves. Withholding watering for 5d resulted in complete stomatal closure and in severe leaf water deficit. Leaf water potential fully recovered immediately after rewatering, but the aftereffect of drought on stomata persisted for 2d. ABA and sucrose were quantified in pressurized leaf xylem extrudates. We assumed that the xylem sucrose concentration is negligible and hence that the presence of sucrose in leaf extrudates indicated that they were contaminated by phloem. To eliminate this interference, the concentration of ABA in leaf apoplast was estimated by extrapolation to zero sucrose concentration, using the regression between ABA and sucrose concentrations. The estimated apoplastic ABA concentration increased by 100-fold with soil drying and did not return to pre-stress values immediately following rewatering. g was closely related to the concentration of ABA in leaf apoplast. Furthermore, the feeding of exogenous ABA to leaves detached from well-watered plants brought about the same degree of depression in g as resulted from the drought-induced increase in ABA concentration. We therefore conclude that the observed changes in the concentration of ABA in leaf apoplast were quantitatively adequate to explain drought-induced stomatal closure and the delay in stomatal reopening following rewatering.  相似文献   

18.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

19.
There is now strong evidence that the plant hormone abscisic acid (ABA) plays an important role in the regulation of stomatal behaviour and gas exchange of droughted plants. This regulation involves both long-distance transport and modulation of ABA concentration at the guard cells, as well as differential responses of the guard cells to a given dose of the hormone. We will describe how a plant can use the ABA signalling mechanism and other chemical signals to adjust the amount of water that it loses through its stomata in response to changes in both the rhizospheric and the aerial environment. The following components of the signalling process can play an important part in regulation: (a) ABA sequestration in the root; (b) ABA synthesis versus catabolism in the root; (c) the efficiency of ABA transfer across the root and into the xylem; (d) the exchange of ABA between the xylem lumen and the xylem parenchyma in the shoot; (e) the amount of ABA in the leaf symplastic reservoir and the efficiency of ABA sequestration and release from this compartment as regulated by factors such as root and leaf-sourced changes in pH; (f) cleavage of ABA from ABA conjugates in the leaf apoplast; (g) transfer of ABA from the leaf into the phloem; (h) the sensitivity of the guard cells to the [ABA] that finally reaches them; and lastly (i) the possible interaction between nitrate stress and the ABA signal.  相似文献   

20.
Early signals potentially regulating leaf growth and stomatal aperture in field-grown maize (Zea mays L.) subjected to drought were investigated. Plants grown in a field lysimeter on two soil types were subjected to progressive drought during vegetative growth. Leaf ABA content, water status, extension rate, conductance, photosynthesis, nitrogen content, and xylem sap composition were measured daily. Maize responded similarly to progressive drought on both soil types. Effects on loam were less pronounced than on sand. Relative to fully-watered controls, xylem pH increased by about 0.2 units one day after withholding irrigation (DAWI) and conductivity decreased by about 0.25 mS cm(-1) 1-3 DAWI. Xylem nitrate, ammonium, and phosphate concentrations decreased by about 50% at 1-5 DAWI and potassium concentration decreased by about 50% at 7-8 DAWI. Xylem ABA concentration consistently increased by 45-70 pmol ml(-1) at 7 DAWI. Leaf extension rate decreased 5 DAWI, after the changes in xylem chemical composition had occurred. Leaf nitrogen significantly decreased 8-16 DAWI in droughted plants. Midday leaf water potential and photosynthesis were significantly decreased in droughted plants late in the drying period. Xylem nitrate concentration was the only ionic xylem sap component significantly correlated to increasing soil moisture deficit and decreasing leaf nitrogen concentration. Predawn leaf ABA content in droughted plants increased by 100-200 ng g(-1) dry weight at 7 DAWI coinciding with a decrease in stomatal conductance before any significant decrease in midday leaf water potential was observed. Based on the observed sequence, a chain of signal events is suggested eventually leading to stomatal closure and leaf surface reduction through interactive effects of reduced nitrogen supply and plant growth regulators under drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号