首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The aim of this paper was to analyze the biomethanization process of food waste (FW) from a university campus restaurant in six reactors with three different total solid percentages (20%, 25% and 30% TS) and two different inoculum percentages (20-30% of mesophilic sludge). The experimental procedure was programmed to select the initial performance parameters (total solid and inoculum contents) in a lab-reactor with V: 1100mL and, later, to validate the optimal parameters in a lab-scale batch reactor with V: 5000mL. The best performance for food waste biodegradation and methane generation was the reactor with 20% of total solid and 30% of inoculum: give rise to an acclimation stage with acidogenic/acetogenic activity between 20 and 60 days and methane yield of 0.49L CH4/g VS. Also, lab-scale batch reactor (V: 5000mL) exhibit the classical waste decomposition pattern and the process was completed with high values of methane yield (0.22L CH4/g VS). Finally, a protocol was proposed to enhance the start-up phase for dry thermophilic anaerobic digestion of food waste.  相似文献   

2.
The potential of various biomasses for the production of green chemicals is currently one of the key topics in the field of the circular economy. Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and they can be produced in similar reactors as biogas to increase the productivity of a digestion plant, as VFAs have more varying end uses compared to biogas and methane. In this study, the aim was to assess the biogas and VFA production of food waste (FW) and cow slurry (CS) using the anaerobic biogas plant inoculum treating the corresponding substrates. The biogas and VFA production of both biomasses were studied in identical batch scale laboratory conditions while the process performance was assessed with chemical and microbial analyses. As a result, FW and CS were shown to have different chemical performances and microbial dynamics in both VFA and biogas processes. FW as a substrate showed higher yields in both processes (435 ml CH4/g VSfed and 434 mg VFA/g VSfed) due to its characteristics (pH, organic composition, microbial communities), and thus, the vast volume of CS makes it also a relevant substrate for VFA and biogas production. In this study, VFA profiles were highly dependent on the substrate and inoculum characteristics, while orders Clostridiales and Lactobacillales were connected with high VFA and butyric acid production with FW as a substrate. In conclusion, anaerobic digestion supports the implementation of the waste management hierarchy as it enables the production of renewable green chemicals from both urban and rural waste materials.  相似文献   

3.
The influence of different organic fraction of municipal solid wastes during anaerobic thermophilic (55 degrees C) treatment of organic matter was studied in this work: food waste (FW), organic fraction of municipal solid waste (OFMSW) and shredded OFMSW (SH_OFMSW). All digester operated at dry conditions (20% total solids content) and were inoculated with 30% (in volume) of mesophilic digested sludge. Experimental results showed important different behaviours patterns in these wastes related with the organic matter biodegradation and biogas and methane production. The FW reactor showed the smallest waste biodegradation (32.4% VS removal) with high methane production (0.18 LCH4/gVS); in contrast the SH_OFMSW showed higher waste biodegradation (73.7% VS removal) with small methane production (0.05 LCH4/g VS). Finally, OFMSW showed the highest VS removal (79.5%) and the methane yield reached 0.08 LCH4/g VS. Therefore, the nature of organic substrate has an important influence on the biodegradation process and methane yield. Pre-treatment of waste is not necessary for OFMSW.  相似文献   

4.
Amylases take part with vital role in industries such as food, fermentation; starch processing, textile and paper etc. Increasing amylases demand, high nutrient expenditure and environmental pollution have forced to utilize agro-industrial residues as a low-cost feedstock for enzyme production. In present study, three soil samples were collected from agro-industrial waste dumping areas in District Faisalabad. Ten thermophilic bacterial isolates were separated at 55 °C on the basis of colonial morphology, three isolates (F6, F11, F17) showed prominent zone of clearance applying iodine test on starch agar plates. Bacterial isolate F-11 showed highest amylase activity with DNS method and molecularly identified through 16S RNA sequencing as Bacillus sp. with Accession number MH917294. Four unconventional food wastes (banana, lemon, mango and potato) pretreated with 0.8% sulphuric acid concentrations taking 1000 g/L weight released the highest sugars contents and phenolic components. Maximum amylase activity i.e. 29.23 mg/ml was achieved in mango waste at, 40 °C, with pH 6.0 and 0.17% nitrogenous source adding 8% inoculum size (2 days old) using Response Surface Methodology (RSM) for optimization. Crude amylase confirmed its efficiency in starch hydrolysis that suggested it as potential candidate for application in starch industries.  相似文献   

5.
The effects of three different inocula (domestic wastewater, activated sludge, and anaerobic sludge) on the treatment of acidic food waste leachate in microbial fuel cells (MFCs) were evaluated. A food waste leachate (pH 4.76; 1000 mg chemical oxygen demand (COD)/L) was used as the substrate. The results indicate that the leachate itself can enable electricity production in an MFC, but the co-addition of different inocula significantly reduces the start-up time (approximately 7 days). High COD and volatile fatty acids removal (>87%) were obtained in all MFCs but with only low coulombic efficiencies (CEs) (14–20%). The highest power (432 mW/m3) and CE (20%) were obtained with anaerobic sludge as the co-inoculum. Microbial community analysis (PCR-DGGE) of the established biofilms suggested that the superior performance of the anaerobic sludge-MFC was associated with the enrichment of both fermentative (Clostridium sp. and Bacteroides sp.) and electrogenic bacteria (Magnetospirillum sp. and Geobacter sp.) at the anode.  相似文献   

6.
Kim DH  Kim SH  Kim HW  Kim MS  Shin HS 《Bioresource technology》2011,102(18):8501-8506
The effect of sewage sludge (SWS) addition on the H2 fermentation of food waste (FW) was investigated. It was found that a slight addition of SWS (10:1 = FW:SWS on a COD basis) significantly enhanced the H2 fermentation performance, not only increasing the total amount of H2 produced but accelerating the whole reaction, shortening the lag period, and increasing the H2 production rate. Substrate degradation and microbial germination were also facilitated by SWS addition. A simple calculation reveals that the increased amount of H2 production derived mostly from FW, indicating that SWS addition synergistically enhanced H2 fermentation performance. This was attributed to the existence of Fe and Ca at much higher concentrations in the SWS compared to the FW. The batch process treating a mixture of FW and SWS was repeated and showed an average H2 yield of 2.11 ± 0.20 mol H2/mol hexoseadded, which was 13% higher than that of FW treated alone.  相似文献   

7.
Mahar RB  Liu J  Li H  Nie Y 《Biodegradation》2009,20(3):319-330
The conventional landfilling does not promote sustainable waste management due to uncontrolled emissions which potentially degrade the environment. Pretreatment of municipal solid waste prior to landfilling significantly enhances waste stabilization, reduces the emissions and provides many advantages. Therefore, pretreatment of municipal solid waste methods were investigated. The major objectives of biological pretreatment are to degrade most easily degradable organic matters of MSW in a short duration under controlled conditions so as to produce desired quality for landfill. To investigate the suitable pretreatment method prior to landfilling for developing countries four pretreatment simulators were developed in the laboratory: (i) anaerobic simulator (R1), (ii) aerobic pretreatment simulator by natural convection of air (R2), (iii) aerobic pretreatment simulator by natural convection of air with leachate recirculation (R3) and (iv) forced aeration and leachate recirculation (R4). During the pretreatment organic matter, elemental composition, i.e., carbon, hydrogen, nitrogen and settlement were determined for bench scale experiments. A two-component kinetic model is proposed for the biodegradation of organic matter. Biodegradation kinetic constants were determined for readily and slowly degradable organic matter. The biodegradation of organic matter efficiency in terms of kinetic rate constants for the pretreatment simulators was observed as R4 > R3 > R2 > R1. Biodegradation rate constants for readily degradable matter in simulators R4 and R3 were 0.225 and 0.222 per day. R3 and R4 simulators were more effective in reducing methane emissions about 45% and 55%, respectively, as compared to anaerobic simulator R1. Pretreatment of MSW, by natural convection of air with leachate recirculation R3 is sustainable method to reduce the emissions and to stabilize the waste prior to landfilling.  相似文献   

8.
With the main objective of test an inoculum of chitin-degrading rumen bacteria, 15 lambs with an average BW of 22.8 kg were allotted at random (5 per treatment) to diets containing: T1 = soybean meal, corn meal and corn stover (control treatment), T2 = inclusion on the diet of 250 g of shrimp shell waste (SSW) per 1000 g (DM bases), in replacement of ingredients contained in T1, and T3 = T2 + inoculum made of Streptococcus milleri (chitin-degrading bacterium; 0.12 g animal−1 d−1). In general, the feed intake, weight gain and feed conversion were similar (P<0.05) between T1 and T3, but the lambs feed SSW without inoculum (T2) presented the lowest values. Concentration of total and cellulolytic bacteria was similar among treatments after 30 d, but decreased in T2 and T3 after 60 d. The population of chitinolytic bacteria increased (P<0.05) in the rumen of lambs fed 25% SSW. This increment was observed in lambs feed with or without inoculum. It is concluded that SSW can be efficiently used as a feedstuff for ruminants without any requirement of an adaptation period to the diet and decreasing the diet cost, if an inoculum of chitinolytic bacteria is added.  相似文献   

9.
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV–Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.  相似文献   

10.
A novel batch process that produces H2 without inoculum addition was devised based on two facts: (1) the abundant indigenous microflora found within organic solid wastes and (2) batch H2 production completion times being in the same range with hydraulic retention times at continuous processes. Food waste successfully served not only as a substrate but also as a source of H2-producing microflora when heat (90 °C for 20 min), acid (pH 1.0 for 1 d), or alkali (pH 13.0 for 1 d) treatment was applied. Among the three pretreatments, the heat treatment showed the best performance. The role of the pretreatment was the selection of microbial population rather than the enhancement of hydrolysis. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis showed that lactic acid bacteria were the most abundant species in untreated food waste while H2-producing bacteria were dominant in the pretreated food wastes. The increase of pretreatment temperature depressed the lactate production while increased the H2/butyrate production. Repeated batch operation performances were impressive and reliable, achieving a very high H2 yield of 2.05 mol H2/mol hexoseconsumed with a margin of 17% error. As this invented method is simpler than those of existing continuous systems, and does not require a start-up period, this method is thought to be practically applicable.  相似文献   

11.
Yarrowia lipolytica as an oleaginous yeast is capable of growing in various non-conventional hydrophobic substrate types, especially industrial wastes. In this study, the content of thiamine (vitamin B1), riboflavin (vitamin B2), pyridoxine (vitamin B6), biotin (vitamin B7) and folic acid (vitamin B9) in the wet biomass of Y. lipolytica strains cultivated in biofuel waste (SK medium), compared to the standard laboratory YPD medium, was assessed. Additionally, the biomass of Y. lipolytica A-101 grown in biofuel waste (SK medium) was dried and examined for B vitamins concentration according to the recommended microbial methods by AOAC Official Methods. The mean values of these vitamins per 100 g of dry weight of Y. lipolytica grown in biofuel waste (SK medium) were as follows: thiamine 1.3 mg/100 g, riboflavin 5.3 mg/100 g, pyridoxine 4.9 mg/100 g, biotin 20.0 µg/100 g, and folic acid 249 µg/100 g. We have demonstrated that the dried biomass is a good source of B vitamins which can be used as nutraceuticals to supplement human diet, especially for people at risk of B vitamin deficiencies in developed countries. Moreover, the biodegradation of biofuel waste by Y. lipolytica is desired for environmental protection.  相似文献   

12.
Based on the impact of volatile organic compounds (VOCs) on secondary metabolite pathways, a novel submerged volatile co-culture system was constructed, and the effects of thirteen fungal and bacterial VOCs were investigated on Ganoderma lucidum exopolysaccharides production. The results demonstrated at least a 2.2-fold increase in exopolysaccharide (EPS) specific production yield in 6 days submerged volatile co-culture of G. lucidum with Pleurotus ostreatus. Therefore, P. ostreatus was selected as a variable culture, and the effects of agitation speed, inoculum size, initial pH, and co-culture volume on EPSs production were investigated using a Taguchi L9 orthogonal array. Finally, the highest concentration of EPSs (3.35 ± 0.22 g L?1) was obtained under optimized conditions; initial pH 5.0, inoculum size 10%, 150 rpm, and 3:1 volume ratio of variable culture to main culture.  相似文献   

13.
The use of a granular inoculum prevented acidification during the anaerobic batch biodegradation of a kitchen waste for waste/inoculum ratios in the range of 0.5–2.3 g VS/g VS, when the alkalinity/COD ratio was 37 mg NaHCO3/g COD. In similar experiments but using a suspended sludge with a significantly lower activity, the methane production rates and the biodegradability were significantly lower and the pH decreased below 5.5 at the waste/inoculum ratio of 2.3 g VS/g VS. When the added alkalinity was decreased to 2 mg NaHCO3/g COD, the ratio waste/inoculum was clearly more important than the inoculum activity, since, irrespective of the sludge used, acidification occurred at waste/inoculum ratios higher than 0.5 g VS/g VS. The advantage of using granular sludge was further investigated in order to define reasonable condition of waste/inoculum ratio and added alkalinity that could be applied in practice. For a waste/inoculum ratio of 1.35, there were no significant differences between the results obtained for the biodegradability and maximum methane production rate (MMPR), when the alkalinity decreased from 44 to 22 mg NaHCO3/g COD.  相似文献   

14.
Summary The mobility and biodegradability in soil of a dilute waste oil emulsion generated by an aluminium rolling industry was investigated. Laboratory simulations and field evaluation of waste disposal suggested that the majority of the oil emulsion was retained in surface soil following application. However, potential leaching of waste to the subsurface was demonstrated, particularly at higher loading rates in soils of sandy texture. Strategies to enhance rates of biodegradation in surface soils were investigated, including fertilization and microbial inoculation. A single strain inoculum was obtained from a group of 81 isolates selected for their ability to partially mineralize the waste oil emulsion, and was tentatively characterized as a hydrocarbonoclasticCorynebacterium sp. Inoculation did not effectively stimulate waste removal in soil compared with fertilization, which significantly increased respiration and biodegradation. The maximum loss of the applied oil emulsion from soil was 30% during a 56-day in vitro incubation. Fertilized, aerated liquid waste emulsion was more rapidly degraded, resulting in loss of 65% of the waste emulsion within 18 days.Published with the approval of the Director of the West Virginia University Agriculture and Forestry Experiment Station as Scientific Article no. 2324.  相似文献   

15.
Characterization of food waste as feedstock for anaerobic digestion   总被引:13,自引:0,他引:13  
Food waste collected in the City of San Francisco, California, was characterized for its potential for use as a feedstock for anaerobic digestion processes. The daily and weekly variations of food waste composition over a two-month period were measured. The anaerobic digestibility and biogas and methane yields of the food waste were evaluated using batch anaerobic digestion tests performed at 50 degrees C. The daily average moisture content (MC) and the ratio of volatile solids to total solids (VS/TS) determined from a week-long sampling were 70% and 83%, respectively, while the weekly average MC and VS/TS were 74% and 87%, respectively. The nutrient content analysis showed that the food waste contained well balanced nutrients for anaerobic microorganisms. The methane yield was determined to be 348 and 435 mL/gVS, respectively, after 10 and 28 days of digestion. The average methane content of biogas was 73%. The average VS destruction was 81% at the end of the 28-day digestion test. The results of this study indicate that the food waste is a highly desirable substrate for anaerobic digesters with regards to its high biodegradability and methane yield.  相似文献   

16.
This study aimed to optimize the biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the co-production of chitinase and chitosaccharides (CS) under submerged fermentation and evaluation of their bioactivities. Canonical analysis and parametric optimization wrought the peakest production of chitinase (21.48 U/ml) and CS (124 μg/ml) after 66.4 h of fermentation at 37.6 °C. The medium containing 2.64% (w/v) shrimp shell powder, 0.38% (w/v) NaCl, 6.86 × 106 cfu/ml inoculum concentration and an agitation speed of 120 rpm were found best. These optimized parameters were also authenticated by scale up of fermentation in 5 L fermentor and a reproducible results obtained with specific yield of chitinase (YP/Schi) of 958.82 U/g and CS (YP/SCS) 5.5 mg/g. A 59 kD chitinase was purified from culture filtrate by sequential chromatography techniques. The enzyme exhibited high degree of antifungal activity particularly against pathogenic Aspergillus flavus and Fusarium oxysporum by dissolving their cell wall components. The IC50 values for A. flavus and F. oxysporum were 3.7 and 4.5 U/ml of purified chitinase, respectively. Chitosaccharides were extracted from the culture filtrate, quantitatively identified as admixture of N-acetylglucosamine monomer (57.5%) and dimer (39.2%). These chitosaccharides have potential antioxidant activity as detected by in vitro free radical scavenging assay.  相似文献   

17.
The effect of food waste (FW) composted with MS (Miraculous Soil Microorganisms) was compared with commercial compost (CC) and mineral fertilizer (MF) on bacterial and fungal populations, soil enzyme activities and growth of lettuce in a greenhouse. Populations of fungi and bacteria, soil biomass, and soil enzyme activities in the rhizosphere of FW treatments significantly increased compared to control (CON), CC and MF treatments at 2, 4, and 6 weeks. The fresh weight of lettuce in FW treatments was about 2-3 times higher than that in CC at 4 and 6 week. The pH, EC, total nitrogen content, organic matter and sodium concentration in FW treatments were generally higher than those in CON, CC and MF treatments.  相似文献   

18.
In a shallow multifunction dam reservoir, perennial water blooms formed by several toxin-producing cyanobacteria (Anabaena spp., Aphanizomenon spp., Planktothrix agardhii and Microcystis spp.) were observed. Over a seven-year period, concomitantly with a gradual decrease in phosphate and total phosphorus concentrations in the water and an increase in the DIN to DIP ratio, a reduced biomass of cyanobacteria was noted. Simultaneously, a twofold increase in cyanobacterial species richness was found. The concentration of intracellular anatoxin-a was positively correlated with the total cyanobacterial biomass, but the concentration of intracellular microcystins was significantly negatively correlated with the level of phosphorus in the water. Therefore, in a period with a very low (2.3–3.6) DIN:DIP ratio, intracellular ANTX prevailed in the reservoir, while in the following years (at DIN:DIP = 23–36) much higher MC levels were noted. The highest total concentrations (22.2 μg L−1) of intracellular MCs (MC-LF > -LY > -LR > -LA = -LW) and ANTX (14.4 μg L−1) were found in 2010. In the following year, eight MC iso-forms were detected (MC-LF > -LY > -LA > -LR > -LW > -WR > -YR > -RR). The number of MC variants was positively correlated with the increased contribution of Anabaena planctonica/A. affinis and Microcystis spp. to cyanobacteria biomass. The indigenous bentho-pelagic fish Abramis brama L. accumulated in their tissues relatively high amounts of both ANTX (e.g. 6.2–18.4 μg g−1 FW of liver) and different variants of MCs (up to 4.4 μg g−1 FW of liver). Cyanotoxin tissue contents decreased in the following order: gills > liver > muscles. These observed strong changes in the species structure of cyanobacteria assemblages, even at their considerably smaller biomass, appeared to be an undesirable phenomenon due to the predominance of the efficient MC and ANTX producers, such as Anabaena spp., which is easily digested by fish. The variability of the profile of cyanobacterial blooms that depends on nutrient fluctuations and may account for the diverse toxin accumulation and tissue distribution in freshwater ichthyofauna is noteworthy, especially in water bodies used for fishery.  相似文献   

19.
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.  相似文献   

20.
Bacillus subtilis microbe is commonly found in soil and produces proteases on nitrogen and carbon-containing sources and increases the fertility rate by degrading nitrogenous organic materials. The present study was aimed to develop hyper producing mutant strain of B. subtilis for the production of proteases, to improve the process variables by the response surface methodology (RSM) under central composite design (CCD) and the production of protease by the particular mutant strain in a liquid state fermentation media. The mutation of the strain was carried out using ethidium bromide. Pure B. subtilis strain was collected and screened for hyper-production of protease. The production of protease by mutant B. subtilis strain was optimized by varying temperature, inoculum size, pH and incubation time under liquid state fermentation. The CCD model were found to be reliable with r2 of 0.999. The maximum enzyme activity of B. subtilis IBL-04 mutant with 3 mL/100 mL inoculum size, 72 h fermentation time, pH 8, and 45 °C temperature was developed with enzyme activity 631.09 U/mL, indicates 1–7-fold increase in enzyme activity than the parent strain having 82.32 U/mL activity. These characteristics render its potential use in industries for pharmaceutical and dairy formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号