首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information on their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.  相似文献   

2.
Epidemiological data on the health effects of A-bomb radiation in Hiroshima and Nagasaki provide the framework for setting limits for radiation risk and radiological protection. However, uncertainty remains in the equivalent dose, because it is generally believed that direct derivation of the relative biological effectiveness (RBE) of neutrons from the epidemiological data on the survivors is difficult. To solve this problem, an alternative approach has been taken. The RBE of polyenergetic neutrons was determined for chromosome aberration formation in human lymphocytes irradiated in vitro, compared with published data for tumor induction in experimental animals, and validated using epidemiological data from A-bomb survivors. The RBE of fission neutrons was dependent on dose but was independent of the energy spectrum. The same RBE regimen was observed for lymphocyte chromosome aberrations and tumors in mice and rats. Used as a weighting factor for A-bomb survivors, this RBE system was superior in eliminating the city difference in chromosome aberration frequencies and cancer mortality. The revision of the equivalent dose of A-bomb radiation using DS02 weighted by this RBE system reduces the cancer risk by a factor of 0.7 compared with the current estimates using DS86, with neutrons weighted by a constant RBE of 10.  相似文献   

3.
In the absence of epidemiological information on the effects of neutrons, their cancer mortality risk coefficient is currently taken as the product of two low-dose extrapolations: the nominal risk coefficient for photons and the presumed maximum relative biological effectiveness of neutrons. This approach is unnecessary. Since linearity in dose is assumed for neutrons at low to moderate effect levels, the risk coefficient can be derived in terms of the excess risk from epidemiological observations at an intermediate dose of gamma rays and an assumed value, R(1), of the neutron RBE relative to this reference dose of gamma rays. Application of this procedure to the A-bomb data requires accounting for the effect of the neutron dose component, which, according to the current dosimetry system, DS86, amounts on average to 11 mGy in the two cities at a total dose of 1 Gy. With R(1) tentatively set to 20 or 50, it is concluded that the neutrons have caused 18% or 35%, respectively, of the total effect at 1 Gy. The excess relative risk (ERR) for neutrons then lies between 8 per Gy and 16 per Gy. Translating these values into risk coefficients in terms of the effective dose, E, requires accounting for the gamma-ray component produced by the neutron field in the human body, which will require a separate analysis. The risk estimate for neutrons will remain essentially unaffected by the current reassessment of the neutron doses in Hiroshima, because the doses are unlikely to change much at the reference dose of 1 Gy.  相似文献   

4.
This report presents a reanalysis of the Hiroshima and Nagasaki data on severe epilation as an acute radiation effect using both the new DS86 and the old T65D dosimetries. The focus of the report is on several aspects of the data which have previously been examined by Jablon et al (ABCC TR 12-70, 1970) and Gilbert and Ohara [Radiat. Res. 100, 124-138 (1984)]. The report examines the uniformity of epilation response across shielding category, across sex and age, and in terms of interactions between city, sex, age, and shielding category; it also investigates the apparent relative biological effectiveness (RBE) of neutrons in the DS86 dose compared with the T65D dose, using both within- and between-city information. In addition the report discusses evidence for nonlinearity in epilation response. The epilation response function exhibits nonlinearity in terms of both a marked increase in slope at about 0.75 Gy, and then, beginning at about 2.5 Gy, a leveling off and eventual decrease in response. The principal conclusions of the report are as follows. The use of the DS86 dosimetry rather than T65D increases the apparent RBE of neutrons compared with gamma dose from approximately 5 to 10. At these values of RBE the slope of the dose response, in a middle range from 0.75-2.5 Gy, is about 165% greater using DS86 than T65D. With respect to the interactions of sex, city, and shielding method, the size and significance of virtually all nonuniformities in epilation response seem using T65D are also evident with DS86. Additionally it seems difficult to find any evidence that DS86 is an improved predictor of epilation response over T65D. Finally, the fact that the nonlinearity in dose response and apparent actual downturn in epilation occurrence rate at the high end of dose is more striking with DS86 than with T65D is found to be due primarily to the common practice of truncating all T65D doses to 600 rad.  相似文献   

5.
The effective dose of combined spectrum energy neutrons and high energy spectrum γ-rays in A-bomb survivors in Hiroshima and Nagasaki has long been a matter of discussion. The reason is largely due to the paucity of biological data for high energy photons, particularly for those with an energy of tens of MeV. To circumvent this problem, a mathematical formalism was developed for the photon energy dependency of chromosomal effectiveness by reviewing a large number of data sets published in the literature on dicentric chromosome formation in human lymphocytes. The chromosomal effectiveness was expressed by a simple multiparametric function of photon energy, which made it possible to estimate the effective dose of spectrum energy photons and differential evaluation in the field of mixed neutron and γ-ray exposure with an internal reference radiation. The effective dose of reactor-produced spectrum energy neutrons was insensitive to the fine structure of the energy distribution and was accessible by a generalized formula applicable to the A-bomb neutrons. Energy spectra of all sources of A-bomb γ-rays at different tissue depths were simulated by a Monte Carlo calculation applied on an ICRU sphere. Using kerma-weighted chromosomal effectiveness of A-bomb spectrum energy photons, the effective dose of A-bomb neutrons was determined, where the relative biological effectiveness (RBE) of neutrons was expressed by a dose-dependent variable RBE, RBE(γ, D n), against A-bomb γ-rays as an internal reference radiation. When the newly estimated variable RBE(γ, D n) was applied to the chromosome data of A-bomb survivors in Hiroshima and Nagasaki, the city difference was completely eliminated. The revised effective dose was about 35% larger in Hiroshima, 19% larger in Nagasaki and 26% larger for the combined cohort compared with that based on a constant RBE of 10. Since the differences are significantly large, the proposed effective dose might have an impact on the magnitude of the risk estimates deduced from the A-bomb survivor cohort.  相似文献   

6.
While it is recognized that neutrons contributed to the excess cancer incidence and mortality among the atomic bomb survivors in Hiroshima, there is no possibility to deduce the magnitude of this contribution from the data. This remains true even if the neutron doses in the dosimetry system DS86 are corrected upwards in line with recent neutron activation measurements. In spite of this fact, important information can be obtained in the form of an inverse relation of the risk coefficients for γ-rays and neutrons. Such an interrelation must apply because the observed excess incidence or mortality is made up of a γ-ray and a neutron component; increased attribution to neutrons decreases the attribution to photons. Computations with the uncorrected and the corrected DS86 are performed for the mortality and the incidence of solid tumors combined. They refer to doses up to 2 Gy and employ the constant relative risk model and a linear-quadratic dose dependence with variable ratio – the neutron relative biological effectiveness (RBE) at low doses – of the linear component for neutrons and γ-rays. In line with past analyses, no quadratic component is obtained with the uncorrected DS86, but it is seen, even in these calculations, that the assumption of increased neutron RBEs does not translate into proportional increases of the risk coefficients of neutrons, because it leads to substantially reduced risk estimates for γ-rays. Calculations with the corrected dosimetry bring out this reciprocity even more clearly. High values of the neutron RBE reduce – in line with recent suggestions by Rossi and Zaider – the risk estimates for γ-rays substantially. Even a purely quadratic dose relation for γ-rays is consistent with the data; it requires no major increase of the nominal risk coefficients for neutrons over the currently assumed values. The cancer data from Hiroshima can still provide `prudent' risk estimates for photons, but with the corrected DS86, they do not prove that there is a linear component in the dose dependence for photons. Received: 20 January 1997 / Accepted in revised form: 14 March 1997  相似文献   

7.
Brenner and Sachs (Radiat. Res. 140, 134-142, 1994) proposed that the ratio of interchromosomal to intrachromosomal exchanges, termed the F value, can be a cytogenetic fingerprint of exposure to radiations of different linear energy transfer (LET). Using published data, they suggested that F values are over 10 for low-LET radiations and approximately 6 for high-LET radiations. Subsequently, as F values for atomic bomb survivors were reported to be around 6, Brenner suggested that the biological effects of atomic bomb radiation in Hiroshima are due primarily to neutrons. However, the F values used for the survivors were means from individuals exposed to various doses. As the F-value hypothesis predicts a radiation fingerprint at low doses, we analyzed our own data for the survivors in relation to dose. G-banding data for the survivors showed F values varying from 5 to 8 at DS86 doses of 0.2 to 5 Gy in Hiroshima and around 6 in Nagasaki with no evidence of a difference between the two cities. The results are consistent with our in vitro data that the F values are invariably around 6 for X and gamma rays at doses of 0.5 to 2 Gy as well as two types of fission-spectrum neutrons at doses of about 0.2 to 1 Gy. Thus, apart from a possible effect at even lower doses, current data do not provide evidence to support the proposition that the biological effects of atomic bomb radiation in Hiroshima are caused mainly by neutrons.  相似文献   

8.
The effectiveness of neutrons from a facsimile of the Hiroshima bomb was determined cytogenetically. The "Little-Boy" replica (LBR), assembled at Los Alamos as a controlled nuclear reactor for detailed physical dosimetry, was used. Of special interest, the neutron energy characteristics (including lineal energy) measured 0.74 m from the LBR were remarkably similar to those calculated for the 1945 Hiroshima bomb at 1 to 2 km from the hypocenter, as shown in a companion dosimetric paper (Straume, et al., Radiat. Res. 128, 133-142 (1991)). Thus we examine here the effectiveness of neutrons closely resembling those that the A-bomb survivors received at Hiroshima. Chromosome aberration frequencies were determined in human blood lymphocytes exposed in vitro to graded doses of LBR radiation (97% neutrons, 3% gamma rays). Vials of blood suspended in air at distances up to 2.10 m from the center of the LBR uranium core received doses ranging from 0.02 to 2.92 Gy. The LBR neutrons (E approximately 0.2 MeV) produced 1.18 dicentrics and rings per cell per Gy. They were more effective than the higher-energy fission neutrons (E approximately 1 MeV) commonly used in radiobiology. The maximum RBE (RBEM) of LBR neutrons at low doses is estimated to be 60 to 80 compared to 60Co gamma rays and 22 to 30 compared to 250-kVp X rays. These results provide a quantitative measurement of the biological effectiveness of Hiroshima-like neutrons.  相似文献   

9.
While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.  相似文献   

10.
Data from Argonne National Laboratory on lung cancer in 15,975 mice with acute and fractionated exposures to gamma rays and neutrons are analyzed with a biologically motivated model with two rate-limiting steps and clonal expansion. Fractionation effects and effects of radiation quality can be explained well by the estimated kinetic parameters. Both an initiating and a promoting action of neutrons and gamma rays are suggested. While for gamma rays the initiating event is described well with a linear dose-rate dependence, for neutrons a nonlinear term is needed, with less effectiveness at higher dose rates. For the initiating event, the neutron RBE compared to gamma rays is about 10 when the dose rate during each fraction is low. For higher dose rates this RBE decreases strongly. The estimated lifetime relative risk for radiation-induced lung cancers from 1 Gy of acute gamma-ray exposure at an age of 110 days is 1.27 for male mice and 1.53 for female mice. For doses less than 1 Gy, the effectiveness of fractionated exposure to gamma rays compared to acute exposure is between 0.4 and 0.7 in both sexes. For lifetime relative risk, the RBE from acute neutrons at low doses is estimated at about 10 relative to acute gamma-ray exposure. It decreases strongly with dose. For fractionated neutrons, it is lower, down to about 4 for male mice.  相似文献   

11.
To investigate the potential efficacy of fission neutrons from a fast-neutron reactor for the treatment of radioresistant tumors, the relative biological effectiveness (RBE) and tolerance dose of fission neutrons in canine skin were determined. The forelimbs of 34 healthy mongrel dogs received a single dose of fission neutrons (5.6, 6.8, 8.2, 9.6 or 11 Gy) or 137Cs gamma rays (10, 15, 20, 25 or 30 Gy). Based on observations of radiodermatitis for each radiation, the single-fraction RBE of fission neutrons in the sixth month was calculated as approximately 3. The tolerance doses of fission neutrons and gamma rays, defined as the highest doses giving no moist desquamation on the irradiated skin in the recovery phase, were estimated as 7.6 Gy and 20 Gy, respectively. The tolerance dose of 7.6 Gy of fission neutrons included 5.0 Gy of fast neutrons possessing high anti-tumor effects and 1.4 x 10(12) n/cm2 of thermal neutrons, which could be applicable to neutron capture therapy (NCT). The combination of fast-neutron therapy and NCT using a fast-neutron reactor might be useful for the treatment of radioresistant tumors.  相似文献   

12.
Reassessment of gamma doses from the atomic bombs in Hiroshima and Nagasaki has been carried out with thermoluminescent measurements of ceramic materials, such as bricks and decorative tiles, which were collected from buildings that remain as they were at the time of the explosions. The thermoluminescent measurements were performed using thermoluminescent dating techniques generally used in archaeology. Annual background dose rates from natural radionuclides in the ceramic materials and from environmental radiation including cosmic rays were determined with commercially available thermoluminescent detectors. A time-zero point at the original firing of the ceramic materials was estimated from the age of the buildings given in "the register book." Total background dose was evaluated by multiplying the period between the time-zero point and the time of measurement by the annual dose rate. The resultant gamma doses in Hiroshima and Nagasaki are given as a function of distance from ground zero and are compared with the DS86 (Dosimetry System 1986) and the T65D (Tentative 1965 Dose) gamma doses.  相似文献   

13.
The survivors of the A-bomb explosions over Hiroshima and Nagasaki were exposed to a mixed neutron and gamma radiation field. To validate the high-energy portion of the neutron field and thus the neutron dose to the survivors, a method is described that allows retrospective assessment of the fast neutrons from the A-bombs. This is accomplished by the extraction of the noble gas argon from biotites separated from Hiroshima granite samples, and then the detection of the (39)Ar activity that was produced by the capture of the fast neutrons on potassium. Adjusted to the year 1945, activities measured in the first samples taken at distances of 94, 818, 992, and 1,173 m from the hypocenter were 6.9+/-0.2, 0.32+/-0.01, 0.14+/-0.02, and 0.09+/-0.01 mBq/g K, respectively. All signals were significantly above detector background and show low uncertainties. Considering their uncertainties they agree with the calculated (39)Ar activation in the samples, based on the most recent dosimetry system DS02. It is concluded that this method can be used to investigate samples obtained from large distances in Hiroshima, where previous data on fast neutrons are characterized by considerable uncertainties. Additionally, the method can be used to reconstruct the fast neutron fluence in Nagasaki, where no experimental data exist.  相似文献   

14.
As a result of the reassessment of the A-bomb dosimetry, new (DS86) doses were calculated in 1986. In this paper, site-specific estimates of cancer mortality in the years 1950-1985, based on these new doses, are compared with those using the T65DR doses. The subjects of the study are 75,991 members of the Life Span Study sample for whom DS86 doses have been calculated. This reevaluation of the exposures does not change the list of radiation-related cancers. Most differences in dose response between Hiroshima and Nagasaki are no longer significant with the DS86 doses. The dose-response curve is closer to linear with the DS86 than the T65DR doses even for leukemia in the entire dose range, though, statistically, many other models cannot be excluded. However, in the low-dose range, the risk of leukemia remains nonlinear. Assuming a linear model at an RBE of 1, and using organ-absorbed doses, the risk coefficients derived from the two dosimetries are very similar, whereas those based on shielded kerma are about 40% higher with the new dosimetry. If RBE values larger than 1 are assumed, the disparity between the two dosimetries increases because the neutron dose is much greater in the T65DR. At an RBE of 10, for the five specific cancers, i.e., female breast, colon, leukemia, lung, and stomach, the increase in excess number of deaths per 10(4) PYSv under the DS86 varies from 12% (colon) to 133% (female breast). The magnitude of the effects of such modifiers of radiation-induced cancer as age at time of bomb and sex do not differ between the two dose systems.  相似文献   

15.
The Comet assay (microgel electrophoresis) was used to study DNA damage in Raji cells, a B-lymphoblastoid cell line, after treatment with different doses of neutrons (0.5 to 16 Gy) or gamma rays (1.4 to 44.8 Gy). A better growth recovery was observed in cells after gamma-ray treatments compared with neutron treatments. The relative biological effectiveness (RBE) of neutron in cell killing was determined to be 2.5. Initially, the number of damaged cells per unit dose was approximately the same after neutron and gamma-ray irradiation. One hour after treatment, however, the number of normal cells per unit dose was much lower for neutrons than for gamma rays, suggesting a more efficient initial repair for gamma rays. Twenty-four hours after treatment, the numbers of damaged cells per unit dose of neutrons or gamma rays were again at comparable level. Cell cycle kinetic studies showed a strong G2/M arrest at equivalent unit dose (neutrons up to 8 Gy; gamma rays up to 5.6 Gy), suggesting a period in cell cycle for DNA repair. However, only cells treated with low doses (up to 2 Gy) seemed to be capable of returning into normal cell cycle within 4 days. For the highest dose of neutrons, decline in the number of normal cells seen at already 3 days after treatment was deeper compared with equivalent unit doses of gamma rays. Our present results support different mechanisms of action by these two irradiations and suggest the generation of locally multiply damaged sites (LMDS) for high linear energy transfer (LET) radiation which are known to be repaired at lower efficiency.  相似文献   

16.
The effectiveness of radon-daughter inhalation and irradiation with fission neutrons and gamma rays in the induction of lung carcinomas in Sprague-Dawley rats at low doses is compared. Earlier reports which compared radon-daughter inhalations and neutron irradiations over a wider range of doses were based on dosimetry for the radon-daughter inhalations which has recently been found to be faulty. In the present analysis, low-dose experiments were designed to derive revised equivalence ratios between radon-daughter exposures, and fission neutron or gamma irradiations. The equivalence is approximately 15 working level months (WLM) of radon daughters to 10 mGy of neutrons (the earlier value was 30 WLM to 10 mGy). The relative biological effectiveness (RBE) of neutrons is 50 or more at a gamma-ray dose of 1 Gy. In these experiments with low doses and exposures, the lifetime incidences can be estimated from the raw incidences, while the derivation of the time dependence of the prevalence is essential for the estimation of RBE values and equivalence ratios.  相似文献   

17.
Human peripheral blood lymphocytes from two donors were exposed to low doses (0.05 to 2.0 Gy) of gamma rays, X rays, or fast neutrons of different energies. Chromosome aberrations were analyzed in metaphase of first-division cells after a culture time of 45-46 hr. At this time, less than 5% of the cells were found in second division. Different dose-response relationships were fitted to the data by using a maximum likelihood method; best fits for radiation-induced dicentric aberrations were obtained with the linear-quadratic law for all radiations. The linear component of this equation predominated, however, for neutrons in the range of doses studied, and the frequency of dicentrics induced by d(16)+Be neutrons up to 1.0 Gy could also be described by a linear relationship. The relative biological efficiency (RBE) of X rays and d(16)+Be, d(33)+Be, and d(50)+Be neutrons compared to 60Co gamma rays in the low dose range was calculated from the dose-effect relationships for the dicentrics produced. The RBE increased with decreasing neutron dose and with decreasing neutron energy from d(50)+Be to d(16)-+Be neutrons. The limiting RBE at low doses (RBEo) was calculated to be about 1.5 for X rays and 14.0, 6.2, and 4.7 for the d(16)+Be, d(33)+Be, and d(50)+Be neutrons, respectively.  相似文献   

18.
K Ando  S Koike  S Sato 《Radiation research》1992,131(2):157-161
We have previously proposed that survival curves for cells of murine NFSa fibrosarcomas after exposure to fast neutrons might demonstrate curvature when the neutron doses reach a level high enough to cure the fibrosarcomas. We report here that this is the case. Murine NFSa fibrosarcomas growing in the hind legs of syngeneic mice were exposed to either gamma rays or fast neutrons. The tumors were removed and retransplanted into fresh recipients to obtain 50% tumor cell doses, from which the dose-cell survival relationship was constructed. Survival curves showed continuous bending down to 10(-7), and were well fitted using the linear-quadratic model. The alpha and beta values for neutrons were larger than those for gamma rays. When the surviving fractions at experimental TCD50 doses were calculated using these values, comparable figures were obtained for neutrons and gamma rays. The RBEs for neutrons were comparable for the TCD50 and TD50 assays. Neutron RBE was independent of dose within a range of 5-28 Gy. The capacity of the tumors to repair the damage caused by large doses of neutrons was identical to that for small doses of neutrons, indicating that cells retained the capacity to repair neutron damage irrespective of the size of the dose.  相似文献   

19.
Relative biological effectiveness (RBE) of 252Cf, with respect to 192Ir, has been determined at the low dose rates commonly used in interstitial and intracavitary therapy. The biological criterion was growth reduction in Vicia faba bean roots. Two varieties of Vicia faba were used. For Vicia faba Sutton's seeds, an RBE of 5.7 to 6.6 was obtained for 252Cf Dn + gamma doses of 0.5 to 0.2 Gy respectively and at a Dn + gamma dose rate of 0.11 Gy-1. The gamma contribution D gamma/Dn + gamma at the level of the root tipes was 0.35 and the derived RBE of the neutron emission of 252Cf was then 8.2 to 9.7. For Vicia faba Be1B and in the same irradiation conditions, an RBE of 5.1 to 6.2 was obtained for the total (n + gamma) 252Cf emission and for Dn + gamma doses of 0.4 to 0.2 Gy respectively. These values lead to an RBE of 7.4 to 9.0 for the neutron emission of 252Cf. For Vicia faba BelB, but for another source arrangement (Dn + gamma dose rate of 0.13 Gy . h-1 for 252Cf), an RBE of 5.6 to 7.5 was obtained for the total (n + gamma) emission of 252Cf and for Dn + gamma doses of 0.4 to 0.1 Gy respectively. The gamma contribution (D gamma/Dn + gamma) at the level of the root tips was 0.42, and the derived RBE of the neutron emission of 252Cf was then 8.9-12.3.  相似文献   

20.
Those inhabitants of Hiroshima and Nagasaki who were affected by the A-bomb explosions, were exposed to a mixed neutron and gamma radiation field. Few years later about 120,000 survivors of both cities were selected, and since then radiation-induced late effects such as leukemia and solid tumors are being investigated in this cohort. When the present study was initiated, the fast neutron fluences that caused the neutron doses of these survivors had never been determined experimentally. In principle, this would have been possible if radioisotopes produced by fast neutrons from the A-bomb explosions had been detected in samples from Hiroshima and Nagasaki at distances where the inhabitants survived. However, no suitable radioisotope had so far been identified. As a contribution to a large international effort to re-evaluate the A-bomb dosimetry, the concentration of the radionuclide (63)Ni (half-life 100.1 years) has been measured in copper samples from Hiroshima and Nagasaki. These measurements were mainly performed at the Maier-Leibnitz-Laboratory in Munich, Germany, by means of accelerator mass spectrometry. Because the (63)Ni had been produced in these samples by fast A-bomb neutrons via the reaction (63)Cu(n,p)(63)Ni, these measurements allow direct experimental validation of calculated neutron doses to the members of the LSS cohort, for the first time. The results of these efforts have already been published in a compact form. A more detailed discussion of the methodical aspects of these measurements and their results are given in the present paper. Eight copper samples that had been significantly exposed to fast neutrons from the Hiroshima A-bomb explosion were investigated. In general, measured (63)Ni concentrations decreased in these samples with increasing distance to the hypocenter, from 4 x 10(6 ) (63)Ni nuclei per gram copper at 391 m, to about 1 x 10(5 ) (63)Ni nuclei per gram copper at about 1,400 m. Additional measurements performed on three large-distant copper samples from Hiroshima (distance to the hypocenter 1,880-7,500 m) and on three large-distant copper samples from Nagasaki (distance to the hypocenter 3,931-4,428 m) that were not exposed significantly to A-bomb neutrons, suggest a typical background concentration of about 8 x 10(4 ) (63)Ni nuclei per gram copper. If the observed background is accounted for, the results are consistent with state-of-the-art neutron transport calculations for Hiroshima, in particular for those distances where the victims survived and were included in the life span study cohort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号