首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarized UV light irradiation of flow-oriented fd bacteriophage indicates that the degree of damage (inactivation) depends on the relative orientation of the light polarization vector and the plane of the DNA bases. The technique of anisotropic UV inactivation was evaluated, and further information on the orientation in this virus was gained. The fd bacteriophage were aligned and irradiated with plane-polarized monochromatic UV light either parallel or perpendicular to the virus axis. Variation of the inactivation dichroic ratio with wavelength implicated virus inactivation by light absorbed in both the DNA and protein. Analysis of the wavelength variation of inactivation dichroic ratios gave molecular dichroic ratios of 0.76 and 1.48 for the DNA and protein components, respectively. On the basis of these anisotropic inactivation studies, the average angle of DNA base tilt in fd was calculated to be 29-32°, a value in agreement with the absorption dichroism studies of Bendet and Mayfield.  相似文献   

2.
In green or etiolated rye leaves catalase was most efficiently inactivated by blue light absorbed by its prosthetic heme. Red light was ineffective at low intensity but induced marked inactivation in green leaves at higher photon flux, while far-red light was ineffective. At identical intensities of photosynthetically active radiation, Photosystem II (PS II) was equally inactivated by both blue and red light. Since catalase was insensitive to red light and no sensitizer for red light was detected in isolated peroxisomes, the inactivation of catalase observed in leaves in red light must result from photooxidative reactions initiated in the chloroplasts. In a simplified model system the inactivation of isolated catalase was induced by the presence of a suspension of either intact or broken chloroplasts in red light. This chloroplast-mediated inactivation of catalase in vitro was O2-dependent. It was greatly retarded at low temperature, fully suppressed by the radic al scavenger Trolox, partially retarded by superoxide dismutase, but only little diminished by the singlet oxygen quencher histidine and not affected by dimethylsulfoxide, a hydroxyl radical scavenger. Chloroplast-mediated catalase inactivation in vitro was suppressed by suitable electron acceptors, in particular by methyl viologen. A comparison of the effects of inhibitors, donors, or acceptors for specific sites of the photosynthetic electron transport indicated that an overreduction of PS II and plastoquinone represented the major sources for the formation of O2 and some unidentified radical that appeared to mediate the inactivation of catalase outside of the chloroplasts. Chloroplast-mediated catalase inactivation provides a means for the detection of a redox signalling system of chloroplasts that was postulated to indicate overreduction of plastoquinones. Similarly as in the in vitro system, catalase inactivation in red light was also in leaves temperature-dependent and stimulated by DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone). These results provide strong evidence that inactivation of catalase initiated by chloroplastic reactions in red light occurred also in leaves under identical conditions as in the model system in vitro.  相似文献   

3.
Aequorin, a Ca(II)-sensitive bioluminescent protein from jellyfish, emits light at 469 nm from an excited state of a substituted pyrazine (oxyluciferin) which results from the oxidation of a chromophore molecule that is noncovalently bound to the protein. The chromophore is oxidized when Ca(II) or other activating metal ions are bound by aequorin. In the absence of Ca(II), spontaneous emission of light, referred to as Ca(II)-independent light emission, occurs at a rate less than 10(-6) of that for Ca(II)-induced emission. Proton nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence were used to study structural changes of aequorin accompanying Ca(II)-independent light emission. Time course studies by 1H NMR and CD demonstrate that as a result of Ca(II)-independent light emission, aequorin progressively changes from a rigid, fully active form showing little segmental mobility to a practically unfolded, discharged (i.e., inactive) form in which a number of amino acid residues are significantly mobile. This slow discharged protein (SDP) is distinct in nature and conformation from aequorin which has been discharged by Ca(II), i.e., the blue fluorescent protein. The rate of Ca(II)-independent discharge of aequorin is substantially reduced in the presence of excess Mg(II); the time constant for inactivation at 5 degrees C is 30 days with no Mg(II) present and 70 days with Mg(II) present. The NMR spectra are nearly identical at a given stage of inactivation whether or not Mg(II) is present. Oxyluciferin remains bound to SDP. If it is removed, however, by column chromatography, the resulting apo-SDP partially refolds, and the segmental mobility acquired in the formation of SDP is significantly attenuated particularly for some of the aromatic amino acid residues.  相似文献   

4.
Select porphyrin photosensitizers were studied to determine their effects on DNA-dependent RNA synthesis in the presence and absence of visible light. All of the porphyrins were found to inhibit wheat germ polymerase II to some degree in the dark. In the presence of light, the inhibitory effects of the porphyrins was found to result from both inactivation of the enzyme and impairment of the ability of DNA to serve as a template.  相似文献   

5.
Action spectra for inactivation of varphiX virus, free varphiX single-stranded DNA, and double-stranded varphiX DNA (RF) have been measured using light of wavelength 225-302 mmu. The sensitivity of RF has been determined using bacterial hosts both capable and incapable of reactivation of UV damage. The inactivation of varphiX virus is due, at all wavelengths, to damage to its DNA; it appears that, below 240 mmu, energy absorbed by viral structural protein may inactivate the viral DNA. The variation of the probability of inactivation by an absorbed quantum (quantum yield) with wavelength, in the case of free-single-stranded varphiX DNA, suggests that energy absorbed by pyrimidine residues is more likely to yield inactivation than absorption by purines. This implies that energy transfer is not so extensive as to make all absorbed energy available to pyrimidines.  相似文献   

6.
Uric acid is present in human plasma in relatively high concentrations and is considered to be a natural physiological antioxidant. We have earlier shown that in the presence of Cu(II) and molecular oxygen, uric acid causes strand breakage in DNA. In this article, we show that uric acid fluorescence is quenched by addition of DNA, indicating the formation of uric acid-DNA complex. Uric acid-Cu(II)-mediated DNA strand scission is capable of bacteriophage inactivation and such inactivation is mediated through reduction of Cu(II) to Cu(I) and the generation of oxygen-derived radicals. It is indicated that the DNA breakage is repaired in E. coli and involves the repair of DNA polymerase. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Asynchronous populations of mouse EMT-6 tumor cells were exposed to various doses of 630-nm light in slowly stirred aerobic suspensions after both short-term and long-term exposures to Photofrin II. All survival curves are characterized by a "threshold" light dose below which no cell inactivation occurs followed by a steep light-dose response. Both the shoulder widths and the inactivation curve slopes are functions of Photofrin II concentration. After high doses of light where survival levels are 0.003 and lower, "resistant tails" are observed on some survival curves. Light doses required to inactivate 50% of tumor cell populations were obtained from whole survival curves and their reciprocals (1/D50% survival) used as inactivation "rates". The amount of Photofrin II within cells was measured by a fluorescence assay. Per unit of fluorescence, this photosensitizer is at least 10 times more effective after long-term than after short-term exposures. After long-term exposures, both fluorescence activity and photosensitizing effectiveness are retained in washed cells for several hours. After short-term exposures, a majority of both the fluorescence and photosensitizing activity is lost by multiple washings or stirring in tissue culture medium without drug. These data suggest that the cellular compartments associated with photosensitization after short-term exposures to Photofrin II are probably different from the cellular compartments associated with photosensitization after long-term exposures to the drug. The data are consistent with known properties of the monomeric and oligomeric components of Photofrin II.  相似文献   

8.
With the aim to specifically study the molecular mechanisms behind photoinhibition of photosystem I, stacked spinach (Spinacia oleracea) thylakoids were irradiated at 4 degrees C with far-red light (>715 nm) exciting photosystem I, but not photosystem II. Selective excitation of photosystem I by far-red light for 130 min resulted in a 40% inactivation of photosystem I. It is surprising that this treatment also caused up to 90% damage to photosystem II. This suggests that active oxygen produced at the reducing side of photosystem I is highly damaging to photosystem II. Only a small pool of the D1-protein was degraded. However, most of the D1-protein was modified to a slightly higher molecular mass, indicative of a damage-induced conformational change. The far-red illumination was also performed using destacked and randomized thylakoids in which the distance between the photosystems is shorter. Upon 130 min of illumination, photosystem I showed an approximate 40% inactivation as in stacked thylakoids. In contrast, photosystem II only showed 40% inactivation in destacked and randomized thylakoids, less than one-half of the inactivation observed using stacked thylakoids. In accordance with this, photosystem II, but not photosystem I is more protected from photoinhibition in destacked thylakoids. Addition of active oxygen scavengers during the far-red photosystem I illumination demonstrated superoxide to be a major cause of damage to photosystem I, whereas photosystem II was damaged mainly by superoxide and hydrogen peroxide.  相似文献   

9.
The photochemical stability of anomalous nucleic acid bases of the azatype, 5-azacytosine (I), 5-azacytidine (II), 6-azacytosine (III), 6-azacytidine (IV), 6-azathymine (V), 6-azauracil (VI), and 8-aza-adenine (VII) to U. V. light of the wavelength 254 nm differs from the U. V. stability of the normal constituents. Changes of the U.V. inactivation of Escherichia coli K12 C600, E. coli B, Bacillus cereus, as well as E. coli phages gamma cb2 and gamma b2b5 supplemented with azaderivatives prior to irradiation were investigated. It was found that I, II, III, IV, and VII are more, V and VI less sensitive to U. V. light compared with corresponding natural nucleic acid bases. Their changed U. V. sensitivities are reflected in the survival curves after U. V. -irradiation in as far as azabases are incorporated into the nucleic acids in vivo. This explains the increase in U.V. sensitivity of E. coli K12 C600, E. coli B, and B. cereus supplemented with I, II, III, IV, and VII and the decrease in U.V. sensitivity of Streptococcus faecalis supplemented with V (the latter information was taken from Gunther and Prusoff 1967). The lack of any significant influence on inactivation curves of E. coli K12 C600 by V and VI, and on E. coli phages gamma cb2 and gamma c2b5 by II, is discussed in terms of too small incorporation rates. No discrimination was put forward with respect to DNA and RNA incorporation.  相似文献   

10.
Weis E 《Plant physiology》1982,70(5):1530-1534
The most heat-sensitive functions of chloroplasts in Spinacia oleracea L. including the stromal carboxylation reaction, the light-induced electrical field gradient across the thylakoid membrane, as well as the overall photosynthetic CO2 fixation were less affected by heat if chloroplasts were heated in the light: 50% inactivation occurred around 35°C in the dark and around 40°C in the light. Relative low light intensities were sufficient to obtain optimal protection against heat. In contrast, the light-induced ΔpH across the thylakoid membrane, the photophosphorylation, and the photochemical activity of photosystem II which were less sensitive to heat in the dark (50% inactivation above 40°C) were not protected by light. Photosystem II even was destabilized somewhat by light.

The effect of light on the heat sensitivity of the water-splitting reaction was dependent on the pH in the medium. Protection by light only occurred at alkaline pH, in which case heat sensitivity was high (50% inactivation at 33°C in the dark and at 38°C in the light). Protection was prevented by uncouplers. At pH 6.8 when the heat sensitivity was low in any case (50% inactivation at 41°C in the dark), light had no further protecting effect.

Protection by light has been discussed in terms of light-induced transport of protons from the stroma to the thylakoid space and related ion fluxes.

  相似文献   

11.
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.  相似文献   

12.
Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH.  相似文献   

13.
We investigated the efficiency and the mechanism of action of a tetraphenyl porphyrin derivative in its photoreaction with T7 phage as surrogate of non-enveloped DNA viruses. TPFP was able to sensitize the photoinactivation of T7 phage in spite of the lack of its binding to the nucleoprotein complex. The efficiency of TPFP photosensitization was limited by the aggregation and by the photobleaching of porphyrin molecules. Addition of sodium azide or 1,3-dimethyl-2-thiourea (DMTU) to the reaction mixture moderated T7 inactivation, however, neither of them inhibited T7 inactivation completely. This result suggests that both Type I and Type II reaction play a role in the virus inactivation. Optical melting studies revealed structural changes in the protein part but not in the DNA of the photochemically treated nucleoprotein complex. Polymerase chain reaction (PCR) also failed to demonstrate any DNA damage. Circular dichroism (CD) spectra of photosensitized nucleoprotein complex indicated changes in the secondary structure of both the DNA and proteins. We suggest that damages in the protein capsid and/or loosening of protein-DNA interaction can be responsible for the photodynamic inactivation of T7 phage. The alterations in DNA secondary structure might be the result of photochemical damage in phage capsid proteins.  相似文献   

14.
The ability of the cis-plantinum(II) diamminedichloride and its hydrolytic products to inactive DNA bacteriophages was examined on the models T2, T4, T4BO1, T3, and lambda. The inactivation of all bacteriophages under study increases gradually during the first 40-90 min of the action of neutral cis-Pt(II) and later passes into an exponential phase. The extent of the region of slower inactviation is larger for osmotically sensitive strains T2 and T4. Inactivation with the hydrolytic products for cis-Pt(II) proceeds exponentially starting from the very beginning and their inactivating effect is higher by 40-80 times than for a comparable concentration of the original complex. The extent of inactivation is not affected with the HCR marker of the host bacteria. The sensitivity to cis-Pt(II) is higher for bacteriophages with a head permeable to salts. An additional inactivation ("after-effect") was observed after dilution of the complex; it can be removed by adding S-aminoisothiuronium dihydrobromide (AET). The results obtained are in good accord with the assumption that inactivation is due to the hydrolytic products arising in the head of bacteriophage.  相似文献   

15.
The size of the complex that is essential for the electron-transferactivity from the oxygen-evolving center to the secondary electronacceptor, QB, is about 250 kDa, as determined by target-sizeanalysis after the radiation inactivation of functions of photosystemII (PS II). Inter-Chl tranfer of excitation energy was insensitiveto the radiation inactivation indicating that the masses ofCP47, CP43, and light-harvesting Chi a/b proteins are not includedin the functional size of the oxygen-evolving PS II complex.The transfer of electrons from the secondary electron donor,Z, to QB was catalyzed by a unit of only 65 kDa. The sizes ofthe complexes involved in these light-induced functions of PSII were dependent on the intensity of actinic light. Under saturatingintensities of light, the functional size of the complex fortransfer of electrons from Z to QB was 38 kDa, with a correspondingdecrease in the size of the oxygen-evolving PS II from 250 kDato 125 kDa [Takahashi, Mano and Asada (1985) Plant Cell Physiol.26: 383]. The protein of about 30 kDa functions in the photoreductionof the pheophytin molecule, as well as in the electron transferfrom Z to QA. Under low-intensity light, complexes having thesame sizes as those of the basal functional complexes undersaturating-intensity light are further required, probably tostabilize separated charges in the PS II reaction center andthe oxygen-evolving center. (Received June 20, 1990; Accepted September 18, 1990)  相似文献   

16.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

17.
The light-dependent reactivation of photosystem II in Chlorella pyrenoidosa Chick, CALU-175 cells, inactivated with supraoptimal temperatures (40-43 degrees C) in the dark or during heterotrophic growth was studied. It was shown that the inactivation of photosystem II after incubation in the dark at 41-42 degrees C, which showed up in the suppression of relative yield of variable chlorophyll fluorescence Fv due to an increase in yield F0 could be completely reversed by light. The inactivation of photosystem II at 43 degrees C in the dark could not be reversed by subsequent irradiation. In this case, the suppression of Fv/Fm was related not only to the growth of F0 but also with the decrease in Fm. The light dependences of the rate and extent of reactivation of yield Fv after heterotrophic growth or incubation of chlorella at 41 degrees C in the dark completely coincided. The full light-induced reactivation of photosystem II took place as the rate of photoinduced electron transport reached the rate of nonphotochemical reduction of plastoquinone in the dark. These results suggest that the light-reversed inactivation of photosystem II after heterotrophic growth or incubation at 41 degrees C in the dark is due to the redox-interaction of the primary quinone acceptor with plastoquinone reduced by the electron flux from the substrates of chlororespiration.  相似文献   

18.
Effects of Modifying Topoisomerase II Levels on Cellular Recovery from Radiation Damage. Experiments were performed with the budding yeast, Saccharomyces cerevisiae, to test whether DNA topoisomerase II is involved in repair of DNA damage induced by ionizing radiation. Topoisomerase II was inactivated by use of a temperature-sensitive mutation. Enzyme inactivation increased cellular radiosensitivity, blocked the restitution of broken chromosomes, assayed by pulsed-field gel electrophoresis, and prolonged the induction of a DNA damage-inducible gene (RNR3). Overexpression of the topoisomerase II gene did not alter cellular radiosensitivity. The data support a role for topoisomerase II in the repair of DNA strand breaks.  相似文献   

19.
Specific methylases that have the properties of deoxyribonucleic acid (DNA) modification enzymes have been isolated from Haemophilus influenzae strain Rd. Two activities ((Methylase IIa and methylase III) were found to protect transforming DNA of H. parainfluenzae from the action of H. influenzae restriction enzymes. To determine the specificty of the protection, a procedure based on biological activity was developed for the separation and purification of the restriction endonucleases from H. influenzae strain Rd. Two endonuclease R activities presumably corresponding to Hind II and Hind III (P. H. Roy and H. O. Smith, 1973; H. O. Smith and K. W. Wilcox, 1970) were characterized by differences in their chromatographic properties, ability to attack T7 DNA, and inactivation of the transforming activity of different markers of H. parainfluenzae DNA. One endonuclease R enzyme (Hind II) attacked T7 DNA and was found to inactivate the dalacin resistance marker (smaller than 0.01% activity remaining) with only a slight effect on the streptomycin resistance marker (83% activity remaining). Methylase IIa treatment protected 40% of the dalacin resistance marker of H. parainfluenzae DNA from inactivation by Hind II. The other restriction activity (Hind III) was inert towards T7 DNA and inactivated the streptomycin resistance marker of H. parainfluenzae DNA (smaller than 0.01% activity remaining) without any effect on the dalacin resistance marker. The methylation of H. parainfluenzae DNA accomplished by methylase III protected 60% of the transforming activity of the streptomycin resistance marker of H. parainfluenzae DNA from the action of Hind III.  相似文献   

20.
Multiplication of Rous sarcoma virus and morphological conversion of chicken embryo fibroblasts are mediated by a DNA provirus. The role of the provirus in induction of morphological conversion has been shown by experiments of light inactivation of bromodeoxyuridine (BUdR)-sensitized proviral DNA. In the experiments reported here, inactivation of focus formation by BUdR and light could be obtained in cells in which the ability to produce virus has become resistant to X irradiation. This property is considered here to reflect the integrated state of the provirus. These experiments indicate that the role of proviral DNA extends beyond induction of morphological conversion and that an intact provirus is required for the maintenance of the transformed state. These experiments also indicate that no irreversible process leading to morphological conversion is initiated by a nonintegrated or by an integrated provirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号