首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of pheromone receptor cells of male Antheraea polyphemus (Saturniidae) to resolve stimulus pulses was determined at different temperatures (8°, 18°, 28°C). The cells were stimulated by repeated 20-ms puffs of the pheromone components (E, Z)-6, 11-hexadecadienyl acetate and (E, Z)-6,11-hexadecadienal. At higher temperatures, higher frequencies of stimulus pulses were resolved by the nerve-impulse response: about 1.25 pulses per second at 8°C, 2.5 pulses/s at 18°C and 5 pulses/s at 28°C. The decreased ability of receptor cells to resolve stimulus pulses at low temperatures may reduce the male moth's chance of reaching the pheromone source. The peak nerve-impulse frequency increased whereas the duration of nerve-impulse responses to single stimulus pulses decreased at higher temperatures. At a given temperature and stimulus intensity the peak nerveimpulse frequency decreased with shorter intervals between the stimulus pulses, but the duration of the responses remained almost constant. The time needed for recovery from adaptation caused by a single stimulus pulse was longer at lower temperatures. The aldehyde receptor cell recovered more quickly than the acetate cell. At low stimulus concentration, the resolution ability of the acetate cell was strongly decreased, whereas in the aldehyde cell it was only slightly impaired.  相似文献   

2.
Peripheral Mechanisms of Pheromone Reception in Moths   总被引:6,自引:3,他引:3  
Moths pheromones mostly consist of two or a few chemical componentsin a species-specific ratio. Each component is perceived bya particular type of receptor cell. Some pheromone componentscan inhibit the behavioral responses to other pheromone components.A single pheromone molecule is sufficient to elicit a nerveimpulse. The dose-response curve of single pheromone receptorneurons increases over many decades of stimulus intensity. Pheromonereceptor cells can resolve single stimulus pulses up to a frequencyof 10 pulses/s. Electrophysiological and biochemical studieson perireceptor events suggest that the pheromone moleculesinteract with the receptor cell while bound to a reduced formof the pheromone binding protein. The enzymatic degradationof pheromone found on the antennae is much too slow to accountfor the decline of the receptor potential after end of stimulation.The postulated rapid deactivation of the odor molecules adsorbedmight be performed by an oxidation of the pheromone bindingprotein. Several second messenger systems seem to be involvedin the cellular transduction mechanism (IP3 diacylglycerol,cGMP, Ca2+). It is, however, not excluded that pheromone moleculescan gate single ion channels directly and thus elicit the elementaryreceptor potentials, observed at weak stimulus intensities.Chem. Senses 21: 257–268, 1996.  相似文献   

3.
Rouyar A  Party V  Prešern J  Blejec A  Renou M 《PloS one》2011,6(10):e26443
In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal.  相似文献   

4.
Studies on structure–activity relationships were carried out to characterize the response specificity of the benzoic acid cell of the female of the moth Bombyx mori by means of single sensillum electrophysiological recordings. We demonstrated that this cell type responds best to a natural key substance (benzoic acid) and has similar response profiles for less effective compounds, including various halogen substitutes of benzoic acid, benzaldehyde and other derivates of the key compound. Using different halogen substitutes (F, Cl, Br, I), we showed that the cellular response decreases with increasing atomic size of the substitute and that halogen substitutes were most effective in the meta-position. Thus, m-fluor benzoic acid was even more effective than benzoic acid. These results indicate that a critical feature of the stimulus molecule is the inductive effect generated by the halogen substitutes. Increasing the atomic size of the halogen substitute impairs the recognition of the molecule by the receptor cell, possibly due to steric effects. Decreasing the electron density in the aromatic ring improves the receptor response. The benzoic acid receptor cell can be considered as specialist despite not being involved in pheromone detection as it responds maximally to a key substance and has similar response profiles for less effective compounds.  相似文献   

5.
Summary Temporal response characteristics of three cell types of maleA. polyphemus, each responding to a different pheromone component, have been measured using series of short (20 ms) pheromone pulses. The stimuli were delivered through capillaries 20 m in diameter and applied to single olfactory sensilla trichodea. Two of three cell types sensitive to (E,Z)-6,11-hexadecadienal and (E,Z)-4,9-tetradecadienyl acetate are able to resolve at least 5 stimuli/s whereas the third, responding to the major pheromone component (E,Z)-6,11-hexadecadienyl acetate, is slower, resolving only about 2 stimuli/s. These results suggest that receptor cells are able to respond to pulses of pheromone concentration as they occur downwind from a point source. The time-averaged number of nerve impulses does not seem to be a reliable measure of the amount of pheromone reaching the sensillum. Responses of the cells thus reflect the non-uniform distribution of pheromone in a plume rather than the average concentration.  相似文献   

6.
Male moths respond to sex pheromone sources with up-wind flight behaviour. Localization of the odour source requires not only detection of the olfactory stimulus, but also other sensory input regarding, e.g. visual and mechanical stimuli. Thus, integration of different types of sensory input is necessary. It is, however, not known where in the central nervous system the integration of information regarding different sensory modalities takes place. Using intracellular recording and staining techniques, we investigated neurons in the antennal lobe of Spodoptera littoralis, during stimulation with a mechanical stimulus and a sex pheromone. Fifteen percent of all the neurons investigated responded to the mechanical stimulus and the majority of these neurons showed altered responses if the olfactory stimulus was added. A receptor neuron responding only to the wind stimulus was found to arborise in the antennal lobe. Most projection neurons responded with an enhanced action potential frequency to the combined stimulus. In local interneurons, enhancement, depression, or no change of the responses to the wind stimulus was found when the olfactory stimulus was added. The results suggest that neurons present in the antennal lobe integrate mechanosensory and olfactory input, possibly assisting the moths to orient during up-wind flight towards an odour source.  相似文献   

7.
The response of antennal olfactory receptor neurons (ORNs) of Monochamus galloprovincialis to several odourants was tested using single sensillum electrophysiology. Behaviourally active pheromone, and kairomone (host and sympatric bark beetle pheromone) odours were tested alongside smoke compounds released by burnt wood that are potentially attractive to the insect. The antennae bore several types of sensilla. Two plate areas in the proximal and distal ends of each antennal segment were covered with basiconic sensilla that responded to the odour stimuli. Sensilla basiconica contained one or two cells of different spike amplitude. The 32 male and 38 female ORNs tested responded with excitations or inhibitions to the different plant odours. In general the response of male and female receptors was very similar so they were pooled to perform a cluster analysis on ORN responses. Six ORNs were clearly specialised for pheromone reception. Responses to kairomone and smoke odours were less specific than those of pheromone, but a group of 9 cells was clearly excited by smoke compounds (mainly eugenol and 4-methyl 2-methoxyphenol), a group of 8 cells was very responsive to α-pinene, β-pinene and cis-verbenol, and a group of 14 cells responded to a wider range of compounds. The rest of the cells (47%) were either non-responsive or slightly inhibited by smoke compounds. Dose–response curves were obtained for several compounds. Different compounds induced significantly different latencies and these appeared to be unrelated to their boiling point.  相似文献   

8.
  1. We developed a high resolution, on-line stimulus measurement system for accurate control of chemical stimulus applications for Homarus americanus lateral antennule chemoreceptors. Focal stimulus presentations in an electrophysiological preparation with the receptor sensilla intact were measured at small spatial (30 μm) and time (5 ms) scales.
  2. We tested 15 receptor cells with ten 100 ms pulses of 104 M hydroxyproline at 0.5, 1, 2 and 4 Hz and with a single 8 s square pulse. Individual cells showed differences in their capabilities to resolve pulses (“flicker fusion”). At 2 Hz stimulation, some cells could follow stimulus pulses while others could not. At 4 Hz, 3 cells could still encode individual stimulus pulses accurately. The population resolved pulses up to 2 Hz; at 4 Hz, the population response to a pulse series approximated the response to a square pulse.
  3. Repetitive stimulation caused a gradual decrease in the number of spikes and a gradual increase in first spike latency (“cumulative adaptation”). Increased stimulation frequency resulted in greater cumulative adaptation.
  4. Since individual differences in adaptation and disadaptation rates of the receptor cells could not be attributed to measured stimulus variability in situ, lobster chemoreceptor cell populations have intrinsic temporal diversity which, we hypothesize, could be used to analyze pulsatile stimuli that occur in natural turbulent odor plumes.
  相似文献   

9.
Action potentials from individual olfactory cells and receptor potentials were recorded from antennae of female cabbage white butterflies, Pieris brassicae, using a new ‘surface-contact’ recording technique. Stimuli used were plant volatiles and conspecific egg odours. Most cells were activated by some stimuli and inhibited by others. Hence, the ‘odour spectra’ of most cells included activating as well as inhibiting substances. In addition, the ‘response profile’ of a given stimulus contained both positively and negatively responding cells.Cluster analysis of the odour spectra revealed the existence of moderately separated clusters of olfactory receptors. No groups of cells specifically tuned to odours of eggs or cabbage leaves were found. Analysis of the response profiles did not show a clear clustering of stimuli. The results suggested that the membranes of different receptor cells contain several types of acceptor sites in various proportions.No correlation between EAG and receptor potential amplitude or spike frequency was found. It was concluded that the EAG may be useful in comparing the relative receptor sensitivities only when chemically related compounds are involved.  相似文献   

10.
Male moths locate conspecific females by pheromone‐induced upwind flight maintained by detecting a visual flow, termed optomotor anemotaxis. Their behavioural pattern is characterized by an upwind surge in response to a pheromone stimulus and crosswind casting after odour loss, which is considered to be reset and restarted on receipt of another pheromone pulse. However, pheromone‐stimulated males of the potato tuberworm moth Phthorimaea operculella exhibit a series of short and straight intermittent flights, or hops, when moving upwind. It is unclear whether they navigate by employing the same behavioural pattern and wind detection mechanism as that used by flying moths. To analyze odour‐modulated anemotaxis in male potato tuberworm moths, a flat wind tunnel is constructed to give regular odour stimuli to an insect regardless of its location. Moths are subjected to pheromone pulses of different frequencies to test whether they show a behavioural pattern that is reset and restarted by a pheromone pulse. Moths on the ground are also subjected to crosswind shear to examine their detection of wind direction. Path analyses reveal that males surge upwind when they receive a pheromone pulse and exhibit casting by successive hops when they lose odour. This behavioural pattern appears to be similar to that of flying moths. When the direction of the airflow is switched orthogonally, males adjust their course angle accordingly when they are on the ground. It is suggested that, instead of optomotor anemotaxis, this ‘aim‐then‐shoot’ system aids the detection of wind direction, possibly by mechanosensory means.  相似文献   

11.
An analysis of the interaction between stimulus molecules and the olfactory receptor cell membrane is presented. The model is based upon a sequence of events, i.e. stimulus delivery at the olfactory epithelium, absorption of molecules in the mucus layer, diffusion of the molecules towards the receptor cells and molecule-receptor cell membrane interaction. The mathematical analysis considers the situation during electrophysiological experiments, where an odour puff is delivered at an exposed olfactory mucosa. Such a situation resembles sniffing of odour samples. The analysis is discussed in relation to experimental evidence.  相似文献   

12.
Roles of the time coding electrosensory system in the novelty responses of a pulse-type gymnotiform electric fish, Brachyhypopomus, were examined behaviorally, physiologically, and anatomically. Brachyhypopomus responded with the novelty responses to small changes (100 μs) in time difference between electrosensory stimulus pulses applied to different parts of the body, as long as these pulses were given within a time period of ~500 μs. Physiological recording revealed neurons in the hindbrain and midbrain that fire action potentials time-locked to stimulus pulses with short latency (500–900 μs). These time-locked neurons, along with other types of neurons, were labeled with intracellular and extracellular marker injection techniques. Light and electron microscopy of the labeled materials revealed neural connectivity within the time coding system. Two types of time-locked neurons, the pear-shaped cells and the large cells converge onto the small cells in a hypertrophied structure, the mesencephalic magnocellular nucleus. The small cells receive a calyx synapse from a large cell at their somata and an input from a pear-shaped cell at the tip of their dendrites via synaptic islands. The small cells project to the torus semicircularis. We hypothesized that the time-locked neural signals conveyed by the pear-shaped cells and the large cells are decoded by the small cells for detection of time shifts occurring across body areas.  相似文献   

13.
An outstanding challenge in olfactory neurobiology is to explain how glomerular networks encode information about stimulus mixtures, which are typical of natural olfactory stimuli. In the moth Manduca sexta, a species-specific blend of two sex-pheromone components is required for reproductive signaling. Each component stimulates a different population of olfactory receptor cells that in turn target two identified glomeruli in the macroglomerular complex of the males antennal lobe. Using intracellular recording and staining, we examined how responses of projection neurons innervating these glomeruli are modulated by changes in the level and ratio of the two essential components in stimulus blends. Compared to projection neurons specific for one component, projection neurons that integrated information about the blend (received excitatory input from one component and inhibitory input from the other) showed enhanced ability to track a train of stimulus pulses. The precision of stimulus-pulse tracking was furthermore optimized at a synthetic blend ratio that mimics the physiological response to an extract of the females pheromone gland. Optimal responsiveness of a projection neuron to repetitive stimulus pulses therefore appears to depend not only on stimulus intensity but also on the relative strength of the two opposing synaptic inputs that are integrated by macroglomerular complex projection neurons.  相似文献   

14.
15.
Abstract Recordings were made from the pheromone-sensitive receptor cells within antennal hairs of normal and mutant male cabbage loopers, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), using a cut-sensillum technique. From sampling 136 sensilla on normal males and 123 on mutant males, cells excited by pairs of behaviourally redundant minor pheromone components were discovered: Z9–14: Ac was found to be replaceable with 12: Ac and 11–12: Ac was found to be replaceable with Z5–12: Ac. These cells were not found during previous neurophysiological investigations, but explain most of the associations between mutually replaceable (redundant) pheromone components which had been demonstrated previously to be behaviourally redundant in wind tunnel studies. Our results indicate that the mutant gene in T.ni that affects pheromone production does not affect pheromone receptors in males. Using both AC- and DC-coupled recordings from receptor cells, we found that a single minor component could apparently hyperpolarize one cell while depolarizing another cell within the same sensillum, suggesting that noise reduction and other complex signal processing by receptor cells may contribute to odour processing in the macroglomerulus of the antennal lobe.  相似文献   

16.
Male moths respond to conspecific female-released pheromones with remarkable sensitivity and specificity, due to highly specialized chemosensory neurons in their antennae. In Antheraea silkmoths, three types of sensory neurons have been described, each responsive to one of three pheromone components. Since also three different pheromone binding proteins (PBPs) have been identified, the antenna of Antheraea seems to provide a unique model system for detailed analyzes of the interplay between the various elements underlying pheromone reception. Efforts to identify pheromone receptors of Antheraea polyphemus have led to the identification of a candidate pheromone receptor (ApolOR1). This receptor was found predominantly expressed in male antennae, specifically in neurons located beneath pheromone-sensitive sensilla trichodea. The ApolOR1-expressing cells were found to be surrounded by supporting cells co-expressing all three ApolPBPs. The response spectrum of ApolOR1 was assessed by means of calcium imaging using HEK293-cells stably expressing the receptor. It was found that at nanomolar concentrations ApolOR1-cells responded to all three pheromones when the compounds were solubilized by DMSO and also when DMSO was substituted by one of the three PBPs. However, at picomolar concentrations, cells responded only in the presence of the subtype ApolPBP2 and the pheromone (E,Z)-6,11-hexadecadienal. These results are indicative of a specific interplay of a distinct pheromone component with an appropriate binding protein and its related receptor subtype, which may be considered as basis for the remarkable sensitivity and specificity of the pheromone detection system.  相似文献   

17.
The presence of background odour was found to have a small but significant effect on the sensitivity of the antennal olfactory system of houseflies, Musca domestica Linnaeus (Diptera: Muscidae), to new pulses of odour. We show that cross-adaptation and cross-sensitization between a background odour of (+/-)-1-octen-3-ol and pulses of (+/-)-1-octen-3-ol, 2-pentanone and R-(+)-limonene can occur, confirming that olfactory receptor cells are sensitive to different odours. Background odour can increase the responses to low concentration odour pulses and decrease the responses to higher concentration odour pulses. It is suggested that background odour has a larger effect on olfactory receptor cells that respond with a tonic increase of spike frequency, giving information about the level of odour concentration, i.e. the 'static' environment. Cells that respond in a phasic way only provide information on the dynamics of the olfactory environment.  相似文献   

18.
We compared the efficiency of two mate-finding strategies exploited by representatives of the beetle families Cisidae and Anobiidae (genus Dorcatoma) that live inside fruiting bodies of wood-decaying fungi. In the Cisidae both sexes are attracted to host odour, but no pheromones seem to be present (nonpheromone strategy). In the Dorcatoma species only the females are attracted to host odour, but having found a host they attract males with a sexual pheromone (pheromone strategy). With a simulation model, we compared the efficiency of the two strategies at four densities of trees hosting fungal fruiting bodies and at three relative densities of insects. We found only small differences in efficiency between the two strategies at high relative densities of conspecific individuals, regardless of host tree density. The pheromone strategy was relatively more efficient when the relative density of insects or the density of host trees decreased. Thus, species adopting the nonpheromone strategy are probably more sensitive to habitat fragmentation and more likely to decline and go extinct at low population densities (because of Allee effects) than species using the pheromone strategy. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

19.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

20.
ABSTRACT. The effects of insect age, sex, mated state and culture density on the attraction of adult saw-toothed grain beetles, Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae), to sources of food odour and synthetic aggregation pheromone were investigated. In single-insect behavioural assays, insect age affected the attraction to the food odour, but not to the synthetic aggregation pheromone. Conversely, there were sexual differences in the attraction to the aggregation pheromone, but not to the food odour. The effects of the same factors on the antennal response to food odour and synthetic pheromone were also investigated, using the electroantennogram (EAG) technique. Insect age affected the EAG response to food odour, but not to the synthetic pheromone. There were no sexual differences in the EAG responses to either food odour or synthetic pheromone.
The correlation of factors affecting both behavioural and antennal responses, and the possible role of changes in peripheral olfactory receptor sensitivity in the modulation of behaviour are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号