首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6–9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6–9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

2.
In this paper, we report the results of our extensive study on eclosion rhythm of four independent populations of Drosophila melanogaster that were reared in constant light (LL) environment of the laboratory for more than 700 generations. The eclosion rhythm of these flies was assayed under LL, constant darkness (DD) and three periodic light-dark (LD) cycles (T20, T24, and T28). The percentage of vials from each population that exhibited circadian rhythm of eclosion in DD and in LL (intensity of approximately 100 lux) was about 90% and 18%, respectively. The mean free-running period (τ) of eclosion rhythm in DD was 22.85 ± 0.87 h (mean ± SD). Eclosion rhythm of these flies entrained to all the three periodic LD cycles, and the phase relationship (ψ) of the peak of eclosion with respect to “lights-on” of the LD cycle was significantly different in the three periodic light regimes (T20, T24, and T28). The results thus clearly demonstrate that these flies have preserved the ability to exhibit circadian rhythm of eclosion and the ability to entrain to a wide range of periodic LD cycles even after being in an aperiodic environment for several hundred generations. This suggests that circadian clocks may have intrinsic adaptive value accrued perhaps from coordinating internal metabolic cycles in constant conditions, and that the entrainment mechanisms of circadian clocks are possibly an integral part of the clockwork.  相似文献   

3.
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10 h (T20), 12:12 h (T24), and 14:14 h (T28). The mean (±95% confidence interval; CI) free-running period (τ) of the oviposition rhythm was 26.34 ± 1.04 h and 24.50 ± 1.77 h in DD and LL, respectively. The eclosion rhythm showed a τ of 23.33 ± 0.63 h (mean ± 95% CI) in DD, and eclosion was not rhythmic in LL. The τ of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the τ and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.  相似文献   

4.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

5.
The circadian rhythms of locomotor activity of the scorpion Leiurus quinqueslriatus were examined under different light-dark cycles and in free-running conditions. The circadian rhythm is bimodal in LD 12:12 with alternating cycles of temperature (35°-25°C) with high intensity (1300 lux) or in LD 12: 12 with constant temperature 35° C with 300 lux. In LD 12:12 (1300 lux), in long or in short light spans with constant temperature, the bimodal pattern is slightly changed with the appearance of a third minor peak of activity. In free-running conditions, the bimodal rhythm of locomotor activity persists in DD with T about 24 hr, but in LL the rhythm becomes unimodal with T about 24 hr. Cosinor and power spectrum analysis showed the presence of more than one periodic component. It seems that there is a correlation between the range of light regimens, temperature, light intensity and the coincidence of these components. These components are independently entrained by the environmental light cycle. The mechanism of entrainment of components is discussed.  相似文献   

6.
The effect of 'novel running wheels' on circadian clocks of the nocturnal field mouse Mus booduga was investigated during free-running and entrained conditions. In order to find out whether daily access to novel running wheels can entrain the locomotor activity rhythms experimental animals (n = 6) were provided with 'novel running wheels' at a fixed time of the day. The control animals (n = 5) were handled similar to the experimental animals but were not given access to novel running wheels. The results show that daily access to novel running wheels entrained the free-running locomotor activity rhythm of these mice. The post-entrainment free-running period (τ) of the experimental animals was significantly shorter than the pre-entrainment τ, whereas the pre- and post-treatment τ of the control animals did not differ significantly. In separate set of experiments, the effect of access to novel running wheels on the rate of re-entrainment was studied after a 6 h phase advance/delay in 24 h (12:12 h) light/dark (LD) cycles. Experimental animals were given access to novel running wheels for 3-h, 1 h after the 'lights-off' only on the first day of the 'new LD cycles'. Experimental animals took fewer cycles to re-entrain to 6-h phase advanced LD cycles compared to the control animals. After a phase delay in the LD cycles by 6h, the experimental animals took more number of cycles to re-entrain compared to the control animals. These results thus suggest that access to novel running wheel can act as a Zeitgeber for the circadian clocks of the nocturnal mouse M. booduga, and can also modify the rates of re-entrainment to phase shifted LD cycles, in a time-dependent manner.  相似文献   

7.
The effects of varying photophase and altitude of origin on the phase angle difference (Ψ) of the circadian rhythm of oviposition during entrainment to light-dark (LD) cycles and the aftereffects of such photophases on the period of the free-running rhythm (τ) in constant darkness (DD) were evaluated in two Himalayan strains of Drosophila ananassae, the high-altitude (HA) strain from Badrinath (5,123 m above sea level=ASL) and the low-altitude (LA) strain from Firozpur (179 m ASL). The Ψ (i.e., the hours from lights-on of the LD cycle to oviposition median) of both strains was determined in LD cycles in which the photophase at 100 lux varied from 6 to 18 h/24 h. The HA strain was entrained by all LD cycles except the one with 6 h photophase in which it was weakly rhythmic, but the LA strain was entrained by only three LD cycles with photophases of 10, 12, and 14 h, but photophases of 6, 8, 16, and 18 h rendered it arrhythmic. Lights-off transition of LD cycles was the phase-determining signal for both strains as oviposition medians of the HA strain occurred∼6 h prior to lights-off, while those of the LA strain occurred∼1 h after lights-off. The Ψ of the HA strain increased from∼2 h in 8 h photophase to∼11 h in 18 h photophase, while that of the LA strain increased from∼11 h in 10 h photophase to∼15 h in 14 h photophase. The aftereffects of photophase of the prior entraining LD cycles on τ in DD were determined by transferring flies from LD cycles to DD. The τ of the HA strain increased from∼19 to∼25 h when transferred to DD from LD 8:16 and LD 18:6 cycles, respectively, whereas the τ of the LA strain increased from∼26 to∼28 h when transferred to DD from LD 10:14 and LD 14:10 cycles, respectively. Thus, these results demonstrate that the photophases of entraining LD cycles and the altitude of origin affected several parameters of entrainment and the period of the free-running rhythm of these strains.  相似文献   

8.
The aim of these experiments was to test the effect of a cyclic administration of melatonin, by mimicking the daily rhythm of hormone levels, on the circadian organization of two distinct functions in quail: oviposition and feeding activity. Laying and feeding rhythms under photoperiodic conditions and constant darkness (DD) were investigated. Under DD, where the two rhythms were free running, a daily rhythm of melatonin was administered. In LD 14h:10h, two different individual profiles of laying were established, with stable females laying at the same time each day and delayed females laying progressively later each day. For feeding activity, all birds were clearly synchronized to the photoperiodic cycle. In DD, the laying birds showed a free-running rhythm of oviposition with a period longer than 24 h for both profiles but the delayed profile females had a longer period than stable profile females. In comparison, the free-running period of feeding rhythm of the same birds was shorter than 24 h. A cyclic administration of melatonin had no effect on laying rhythm, which continued to free-run in DD, whereas feeding activity was synchronized as soon as the first cycle of melatonin was administered. From these results, it seems that two different circadian systems drive each of the two types of behavior separately. Melatonin could be the main synchronizer for the temporal control of feeding behavior, but it does not play a part in the control of oviposition in Japanese quail.  相似文献   

9.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

10.

Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Daily scheduled restricted feeding (RF), in which the food available time is restricted for several hours each day, elicits anticipatory activity. This food-anticipatory activity (FAA) is controlled by a food-entrainable oscillator (FEO) that is distinct from the suprachiasmatic nucleus (SCN), the master pacemaker in mammals. In an earlier report, we described generation of transgenic (Tg) mice ubiquitously overexpressing cysteine414-alanine mutant mCRY1. The Tg mice displayed long locomotor free-running periods (approximately 28 h) with rhythm splitting. Furthermore, their locomotor activity immediately re-adjusted to the advance of light–dark cycles (LD), suggesting some disorder in the coupling of SCN neurons. The present study examined the restricted feeding cycle (RF)-induced entrainment of locomotor activity in Tg mice in various light conditions. In LD, wild-type controls showed both FAA and LD-entrained activities. In Tg mice, almost all activity was eventually consolidated to a single bout before the feeding time. The result suggests a possibility that in Tg mice the feeding cycle dominates the LD cycle as an entrainment agent. In constant darkness (DD), wild-type mice exhibited robust free-run activity and FAA during RF. For Tg mice, only the rhythm entrained to RF was observed in DD. Furthermore, after returning to free feeding, the free-run started from the RF-entrained phase. These results suggest that the SCN of Tg mice is entrainable to RF and that the mCRY1 mutation alters the sensitivity of SCN to the cycle of nonphotic zeitgebers.

  相似文献   

11.
Locomotor activity rhythm in the hypogean population of Nemacheilus evezardi was recorded first under light-to-dark (LD) 12 : 12 h cycle and then DD. The results were compared with that of its epigean counterpart held under comparable regimes. In LD 12 : 12, while hypogean loach exhibited a distinct bimodality in its locomotor activity rhythm, it was altogether absent in the case of epigean population. In hypogean loach, dark-to-light transition peak in LD was observed to free-run under DD. The same was not discernible in case of epigean loach. The locomotor activity rhythm in epigean fish was noticed to free-run in DD either from the dawn peak or dusk peak in LD. It is hypothesized that the hypogean fish still possesses a functional oscillator underlying its overt circadian rhythm in locomotor activity. The ecophysiological significance of these findings is yet to be fully understood.  相似文献   

12.
Entrainment to light of circadian activity rhythms in tench (Tinca tinca)   总被引:1,自引:0,他引:1  
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60-liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free-running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free-running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

13.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

14.
15.
Circadian rhythms are self-sustaining oscillations that free-run in constant conditions with a period close to 24 h. Overt circadian rhythms have been studied mostly using onset phase as the marker for the underlying pacemaker. Using in vivo online pineal microdialysis, the authors have performed detailed analysis of free-running profiles of rat pineal secretory products, including N-acetylserotonin (NAS) and melatonin that have precisely defined onsets and offsets. When rats entrained in LD 12:12 were released into constant darkness (DD), both onset and offset phases of melatonin and NAS free-run. However, while onsets free-run with a period closer to a day (FRP(on) = 24-24.17 h) at the beginning, offset phases free-run with significantly larger FRPs (free-running periods) (FRP(off) = 24.24-24.42 h). This asymmetric free-running of onset and offset of NAS and melatonin in DD resulted in a 60- to 120-min increase of secretion duration of both NAS and melatonin. The rate of expansion of melatonin duration was 10 to 15 min per circadian cycle. The expansion of melatonin secretion duration ended for some within 4 days, while others were still expanding by the end of 10th day in DD. These results revealed that upon release into DD, the pacemaker's oscillation is initially driven by 2 forces, free running and decompression, before reaching a stable state of free running, and suggest that the circadian pacemaker may be an elastic structure that can decompress and compress under varying photic conditions. They also illustrate the importance of using both onset and offset of a given rhythm as phase markers, as compression/decompression, and transient disparity between FRP(on) and FRP(off) may be a common phenomenon of the circadian pacemaker.  相似文献   

16.
The circadian pacemaker controlling the eclosion rhythm of the high altitude Himalayan strains of Drosophila ananassae captured at Badrinath (5123 m) required ambient temperature at 21°C for the entrainment and free-running processes. At this temperature, their eclosion rhythms entrained to 12h light, 12h dark (LD 12:12) cycles and free-ran when transferred from constant light (LL) to constant darkness (DD) or upon transfer to constant temperature at 21°C following entrainment to temperature cycles in DD. These strains, however, were arrhythmic at 13 or 17°C under identical experimental conditions. Eclosion medians always occurred in the thermophase of temperature cycles whether they were imposed in LL or DD; or whether the thermophase coincided with the photophase or scotophase of the concurrent LD 12:12 cycles. The temperature dependent rhythmicity in the Himalayan strains of D. ananassae is a rare phenotypic plasticity that might have been acquired through natural selection by accentuating the coupling sensing mechanism of the pacemaker to temperature, while simultaneously suppressing the effects of light on the pacemaker.  相似文献   

17.
The circadian rhythm of locomotor activity in the Japanese honeybee Apis cerana japonica was studied to determine the involvement of parametric and/or nonparametric entrainment. The rhythm was entrained to a skeleton photoperiod in which a 1-h first light pulse was imposed in the morning along with a second light pulse in the evening, as well as to a complete photoperiodic regime (LD 12:12). However, the timing of peak activity relative to the lights-off in the evening in the skeleton photoperiod was earlier than that in the complete photoperiod. A single daily light pulse in the evening entrained the rhythm, whereas a daily light pulse in the morning allowed free-running as in constant darkness. The free-running period (τ) of locomotor activity in constant light became longer as the light intensity increased. A Winfree's type I phase response curve of the locomotor activity rhythm was obtained using a single 1-h light pulse. The results suggest that both parametric and nonparametric entrainment are involved in the circadian rhythm of individual locomotor activity in this honeybee.  相似文献   

18.
Circadian clocks regulate physiological and behavioral processes in a wide variety of organisms, and any malfunction in these clocks can cause significant health problems. In this paper, we report the results of our study on the physiological consequences of circadian dysfunction (malfunctioning of circadian clocks) in two wild-type populations of fruit flies (Drosophila melanogaster). We assayed locomotor activity behavior and lifespan among adult flies kept under constant dark (DD) conditions of the laboratory, wherein they were categorized as rhythmic if their activity/rest schedules followed circadian (approximately 24 h) patterns, and as arrhythmic if their activity/rest schedules did not display any pattern. The rhythmic flies from both populations lived significantly longer than the arrhythmic ones. Based on these results, we conclude that circadian dysfunction is deleterious, and proper functioning of circadian clocks is essential for the physiological well being of D. melanogaster.  相似文献   

19.
Summary Japanese quail have a circadian rhythm of locomotor activity whose free-run period () in constant darkness (DD) was 22.5±0.1 h (45). A phase response curve of typical form was obtained by illuminating the free-running rhythm with single 1 h light pulses. Using entrainment theory a derived phase response curve was calculated from the phase relationships between the locomotor rhythm and 1 h light periods in light-dark cycles of various lengths (T). Although the limits of entrainment to theseT cycles differed slightly from those predicted, there was a close correlation between the two phase response curves. The phase relationships between the locomotor rhythm and 1–9 h photoperiods in 24 h cycles were in general accord with a prediction based on the short free-run period and the relative sizes of the delay and advance portions of the phase response curve for 1 h light pulses.  相似文献   

20.
Kerodon rupestris, a Brazilian caviidae rodent, lives in dry stony places. In a first experiment, seven animals were kept in LD (250:0 lux and 400:0 lux) during 40 days in each condition. In the second, four animals were kept in LD (470 lux: red dim light) for 47 days, then in LL (470 lux) for 18 days and in DD (red dim light) for 23 days. Motor activity was continuously recorded by infrared sensors. Animals showed entrained rhythms to the LD cycle being light and dark active, with higher values in phase transitions. When the light intensity was increased, four animals increased and two reduced the activity. In LL, three animals expressed an endogenous tau of 24.4, 26.5 and 24.6 h and one was arrhythmic; in DD, two expressed tau of 23.6 and 23.7 h and one was arrhythmic. Results indicate that Kerodon rupestris circadian rhythm is affected by light intensity but it is not yet possible to determine its habit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号