首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus × giganteus) will be grown on the current maize‐producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while cellulosic ecosystems (i.e., switchgrass and Miscanthus) act as mild sinks. Nitrogen fertilizer use is an important factor affecting biomass production and N2O emissions, especially in the maize ecosystem. To maintain high biomass productivity, the maize ecosystem emits much more GHG, including CO2 and N2O, than switchgrass and Miscanthus ecosystems, when high‐rate nitrogen fertilizers are applied. For maize, the global warming potential (GWP) amounts to 1–2 Mg CO2eq ha?1 yr?1, with a dominant contribution of over 90% from N2O emissions. Cellulosic crops contribute to the GWP of less than 0.3 Mg CO2eq ha?1 yr?1. Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least GHG intensive at a given cropland. Regional model simulations suggested that substituting Miscanthus for maize to produce biofuel could potentially save land and reduce GHG emissions.  相似文献   

2.
Many assessments of product carbon footprint (PCF) for agricultural products omit emissions arising from land‐use change (LUC). In this study, we developed a framework based on IPCC national greenhouse gas inventory methodologies to assess the impacts of LUC from crop production using oil palm, soybean and oilseed rape as examples. Using ecological zone, climate and soil types from the top 20 producing countries, calculated emissions for transitions from natural vegetation to cropland on mineral soils under typical management ranged from ?4.5 to 29.4 t CO2‐eq ha?1 yr?1 over 20 years for oil palm and 1.2–47.5 t CO2‐eq ha?1 yr?1 over 20 years for soybeans. Oilseed rape showed similar results to soybeans, but with lower maximum values because it is mainly grown in areas with lower C stocks. GHG emissions from other land‐use transitions were between 62% and 95% lower than those from natural vegetation for the arable crops, while conversions to oil palm were a sink for C. LUC emissions were considered on a national basis and also expressed per‐tonne‐of‐oil‐produced. Weighted global averages indicate that, depending on the land‐use transition, oil crop production on newly converted land contributes between ?3.1 and 7.0 t CO2‐eq t oil production?1 yr?1 for palm oil, 11.9–50.6 t CO2‐eq t oil production?1 yr?1 for soybean oil, and 7.7–31.4 t CO2‐eq t oil production?1 yr?1 for rapeseed oil. Assumptions made about crop and LUC distribution within countries contributed up to 66% error around the global averages for natural vegetation conversions. Uncertainty around biomass and soil C stocks were also examined. Finer resolution data and information (particularly on land management and yield) could improve reliability of the estimates but the framework can be used in all global regions and represents an important step forward for including LUC emissions in PCFs.  相似文献   

3.
There is a growing need for all productive sectors to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. However, the challenge to the agricultural sector is reducing net emissions while increasing production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance when sugarcane areas are converted from burned harvest (BH) to green harvest (GH, mechanized harvest), including the changes caused by the adoption of conservationist practices such as reduced tillage and a 4‐month crop rotation with Crotalaria juncea L. during sugarcane replanting. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) methodologies, the annual emission balance includes both agricultural and mobile sources of GHG, according to the mean annual consumption of supplies per hectare. The potential soil carbon accumulation was also considered in the GH plot. The total amounts of GHG were 2651.9 and 2316.4 kg CO2eq ha?1 yr?1 for BH and GH, respectively. Factoring in a mean annual soil carbon accumulation rate of 888.1 kg CO2 ha?1 yr?1 due to the input from long‐term crop residues associated with the conversion from BH to GH, the emission balance in GH decreased to 1428.3 kg CO2eq ha?1 yr?1. A second decrease occurs when a reduced tillage strategy is adopted instead of conventional tillage during the replanting season in the GH plot, which helps reduce the total emission balance to 1180.3 kg CO2eq ha?1 yr?1. Moreover, the conversion of sugarcane from BH to GH, with the adoption of a crop rotation with Crotalaria juncea L. as well as reduced tillage during sugarcane replanting, would result in a smaller GHG balance of 1064.6 kg CO2eq ha?1 yr?1, providing an effect strategy for GHG mitigation while still providing cleaner sugar and ethanol production in southern Brazil.  相似文献   

4.
An agronomic assessment of greenhouse gas emissions from major cereal crops   总被引:8,自引:0,他引:8  
Agricultural greenhouse gas (GHG) emissions contribute approximately 12% to total global anthropogenic GHG emissions. Cereals (rice, wheat, and maize) are the largest source of human calories, and it is estimated that world cereal production must increase by 1.3% annually to 2025 to meet growing demand. Sustainable intensification of cereal production systems will require maintaining high yields while reducing environmental costs. We conducted a meta‐analysis (57 published studies consisting of 62 study sites and 328 observations) to test the hypothesis that the global warming potential (GWP) of CH4 and N2O emissions from rice, wheat, and maize, when expressed per ton of grain (yield‐scaled GWP), is similar, and that the lowest value for each cereal is achieved at near optimal yields. Results show that the GWP of CH4 and N2O emissions from rice (3757 kg CO2 eq ha?1 season?1) was higher than wheat (662 kg CO2 eq ha?1 season?1) and maize (1399 kg CO2 eq ha?1 season?1). The yield‐scaled GWP of rice was about four times higher (657 kg CO2 eq Mg?1) than wheat (166 kg CO2 eq Mg?1) and maize (185 kg CO2 eq Mg?1). Across cereals, the lowest yield‐scaled GWP values were achieved at 92% of maximal yield and were about twice as high for rice (279 kg CO2 eq Mg?1) than wheat (102 kg CO2 eq Mg?1) or maize (140 kg CO2 eq Mg?1), suggesting greater mitigation opportunities for rice systems. In rice, wheat and maize, 0.68%, 1.21%, and 1.06% of N applied was emitted as N2O, respectively. In rice systems, there was no correlation between CH4 emissions and N rate. In addition, when evaluating issues related to food security and environmental sustainability, other factors including cultural significance, the provisioning of ecosystem services, and human health and well‐being must also be considered.  相似文献   

5.
As the global demand for food continues to increase, the displacement of food production by using agricultural land for carbon mitigation, via either carbon sequestration, bioenergy or biofuel is a concern. An alternative approach is to target abandoned salinized farmland for mitigation purposes. Australia, for example, has 17 million ha of farmland that is already or could become saline. At a representative, salinized, low rainfall (350 mm yr?1) site at Wickepin, Western Australia, we demonstrate that afforestation can mitigate carbon emissions through either providing a feedstock for bioenergy or second generation biofuel production and produce salt‐tolerant fodder for livestock. A range of factors markedly affect this mitigation. These include hydrological conditions such as salinity, site factors such as slope position and soil properties and a range of silvicultural factors such as species, planting density and age of the planting. High density (2000 stems ha?1) plantings of Eucalyptus occidentalis Endl. produced a mean total biomass of 4.6 t ha?1 yr?1 (8.5 t CO2‐e ha?1 yr?1) averaged over 8 years. Atriplex nummularia Lindl. produced a mean total biomass of 3.8 t ha?1 yr?1 (6.9 t CO2‐e ha?1 yr?1) averaged over 4 years and approximately 1.9 t ha?1 yr?1 of edible dry matter annually to 8 years of age. With differences in salt tolerance between E. occidentalis and A. nummularia, we propose an integrated approach to treating salinized sites that takes salinity gradients into account, replicates natural wetland ecosystems and produces both fodder and biomass. Continued mitigation is expected as the stands mature, assuming that growth is not affected by the accumulation of salt in the soil profile. Such carbon mitigation could potentially be applied to salinized farmland globally, and this could thus represent a major contribution to global carbon mitigation without competing with food production.  相似文献   

6.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

7.
Biomass from dedicated crops is expected to contribute significantly to the replacement of fossil resources. However, sustainable bioenergy cropping systems must provide high biomass production and low environmental impacts. This study aimed at quantifying biomass production, nutrient removal, expected ethanol production, and greenhouse gas (GHG) balance of six bioenergy crops: Miscanthus × giganteus, switchgrass, fescue, alfalfa, triticale, and fiber sorghum. Biomass production and N, P, K balances (input‐output) were measured during 4 years in a long‐term experiment, which included two nitrogen fertilization treatments. These results were used to calculate a posteriori ‘optimized’ fertilization practices, which would ensure a sustainable production with a nil balance of nutrients. A modified version of the cost/benefit approach proposed by Crutzen et al. (2008), comparing the GHG emissions resulting from N‐P‐K fertilization of bioenergy crops and the GHG emissions saved by replacing fossil fuel, was applied to these ‘optimized’ situations. Biomass production varied among crops between 10.0 (fescue) and 26.9 t DM ha?1 yr?1 (miscanthus harvested early) and the expected ethanol production between 1.3 (alfalfa) and 6.1 t ha?1 yr?1 (miscanthus harvested early). The cost/benefit ratio ranged from 0.10 (miscanthus harvested late) to 0.71 (fescue); it was closely correlated with the N/C ratio of the harvested biomass, except for alfalfa. The amount of saved CO2 emissions varied from 1.0 (fescue) to 8.6 t CO2eq ha?1 yr?1 (miscanthus harvested early or late). Due to its high biomass production, miscanthus was able to combine a high production of ethanol and a large saving of CO2 emissions. Miscanthus and switchgrass harvested late gave the best compromise between low N‐P‐K requirements, high GHG saving per unit of biomass, and high productivity per hectare.  相似文献   

8.
Agricultural lands occupy about 40–50% of the Earth's land surface. Agricultural practices can make a significant contribution at low cost to increasing soil carbon sinks, reducing greenhouse gas (GHG) emissions and contributing biomass feedstocks for energy use. Considering all gases, the global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030 is estimated to be ca. 5500–6000 Mt CO2‐eq. yr?1. Economic potentials are estimated to be 1500–1600, 2500–2700 and 4000–4300 Mt CO2‐eq. yr?1 at carbon prices of up to $US20, 50 and 100 t CO2‐eq.?1, respectively. The value of the global agricultural GHG mitigation at the same three carbon prices is $US32 000, 130 000 and 420 000 million yr?1, respectively. At the European level, early estimates of soil carbon sequestration potential in croplands were ca. 200 Mt CO2 yr?1, but this is a technical potential and is for geographical Europe as far east as the Urals. The economic potential is much smaller, with more recent estimates for the EU27 suggesting a maximum potential of ca. 20 Mt CO2‐eq. yr?1. The UK is small in global terms, but a large part of its land area (11 Mha) is used for agriculture. Agriculture accounts for about 7% of total UK GHG emissions. The mitigation potential of UK agriculture is estimated to be ca. 1–2 Mt CO2‐eq. yr?1, accounting for less than 1% of UK total GHG emissions.  相似文献   

9.
Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land‐use change and project potential future emissions. The novel Kaya–Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2‐eq. yr?1 and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop‐ and livestock‐production, respectively. Except for the energy‐use component of farming, emissions from all sources have increased less than agricultural production. Our projected business‐as‐usual range suggests that emissions may be further decoupled by 20–55% giving absolute agricultural emissions of 8.2–14.5 Pg CO2‐eq. yr?1 by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food‐system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.  相似文献   

10.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

11.
We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down‐revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr?1 in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr?1 in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr?1 in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade.  相似文献   

12.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

13.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

14.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

15.
This study presents a cradle‐to‐gate assessment of the energy balances and greenhouse gas (GHG) emissions of Indonesian palm oil biodiesel production, including the stages of land‐use change (LUC), agricultural phase, transportation, milling, biodiesel processing, and comparing the results from different farming systems, including company plantations and smallholder plantations (either out growers or independent growers) in different locations in Kalimantan and Sumatra of Indonesia. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6–49.2 GJ t?1 biodiesel yr?1) as well as GHG emissions (1969.6–5626.4 kg CO2eq t?1 biodiesel yr?1). The output to input ratios are positive in all cases. The largest GHG emissions result from LUC effects, followed by the transesterification, fertilizer production, agricultural production processes, milling, and transportation. Ecosystem carbon payback times range from 11 to 42 years.  相似文献   

16.
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO2) from fossil fuels, methane (CH4) and nitrous oxide (N2O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg Ceq), and in the unburned system (559 out of 748 kg Ceq). Although nitrogen fertilizer emissions are large, 111 kg Ceq ha?1 yr?1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg Ceq ha?1 yr?1). and BC (1536 kg Ceq ha?1 yr?1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha?1 yr?1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.  相似文献   

17.
Harvesting corn stover for biofuel production may decrease soil organic carbon (SOC) and increase greenhouse gas (GHG) emissions. Adding additional organic matter into soil or reducing tillage intensity, however, could potentially offset this SOC loss. Here, using SOC and life cycle analysis (LCA) models, we evaluated the impacts of land management change (LMC), that is, stover removal, organic matter addition, and tillage on spatially explicit SOC level and biofuels’ overall life cycle GHG emissions in US corn–soybean production systems. Results indicate that under conventional tillage (CT), 30% stover removal (dry weight) may reduce baseline SOC by 0.04 t C ha?1 yr?1 over a 30‐year simulation period. Growing a cover crop during the fallow season or applying manure, on the other hand, could add to SOC and further reduce biofuels’ life cycle GHG emissions. With 30% stover removal in a CT system, cover crop and manure application can increase SOC at the national level by about 0.06 and 0.02 t C ha?1 yr?1, respectively, compared to baseline cases without such measures. With contributions from this SOC increase, the life cycle GHG emissions for stover ethanol are more than 80% lower than those of gasoline, exceeding the US Renewable Fuel Standard mandate of 60% emissions reduction in cellulosic biofuels. Reducing tillage intensity while removing stover could also limit SOC loss or lead to SOC gain, which would lower stover ethanol life cycle GHG emissions to near or under the mandated 60% reduction. Without these organic matter inputs or reduced tillage intensity, however, the emissions will not meet this mandate. More efforts are still required to further identify key practical LMCs, improve SOC modeling, and accounting for LMCs in biofuel LCAs that incorporate stover removal.  相似文献   

18.
We provide a quantitative assessment of the prospects for current and future biomass feedstocks for bioenergy in Australia, and associated estimates of the greenhouse gas (GHG) mitigation resulting from their use for production of biofuels or bioelectricity. National statistics were used to estimate current annual production from agricultural and forest production systems. Crop residues were estimated from grain production and harvest index. Wood production statistics and spatial modelling of forest growth were used to estimate quantities of pulpwood, in‐forest residues, and wood processing residues. Possible new production systems for oil from algae and the oil‐seed tree Pongamia pinnata, and of lignocellulosic biomass production from short‐rotation coppiced eucalypt crops were also examined. The following constraints were applied to biomass production and use: avoiding clearing of native vegetation; minimizing impacts on domestic food security; retaining a portion of agricultural and forest residues to protect soil; and minimizing the impact on local processing industries by diverting only the export fraction of grains or pulpwood to bioenergy. We estimated that it would be physically possible to produce 9.6 GL yr?1 of first generation ethanol from current production systems, replacing 6.5 GL yr?1 of gasoline or 34% of current gasoline usage. Current production systems for waste oil, tallow and canola seed could produce 0.9 GL yr?1 of biodiesel, or 4% of current diesel usage. Cellulosic biomass from current agricultural and forestry production systems (including biomass from hardwood plantations maturing by 2030) could produce 9.5 GL yr?1 of ethanol, replacing 6.4 GL yr?1 of gasoline, or ca. 34% of current consumption. The same lignocellulosic sources could instead provide 35 TWh yr?1, or ca. 15% of current electricity production. New production systems using algae and P. pinnata could produce ca. 3.96 and 0.9 GL biodiesel yr?1, respectively. In combination, they could replace 4.2 GL yr?1 of fossil diesel, or 23% of current usage. Short‐rotation coppiced eucalypt crops could provide 4.3 GL yr?1 of ethanol (2.9 GL yr?1 replacement, or 15% of current gasoline use) or 20.2 TWh yr?1 of electricity (9% of current generation). In total, first and second generation fuels from current and new production systems could mitigate 26 Mt CO2‐e, which is 38% of road transport emissions and 5% of the national emissions. Second generation fuels from current and new production systems could mitigate 13 Mt CO2‐e, which is 19% of road transport emissions and 2.4% of the national emissions lignocellulose from current and new production systems could mitigate 48 Mt CO2‐e, which is 28% of electricity emissions and 9% of the national emissions. There are challenging sustainability issues to consider in the production of large amounts of feedstock for bioenergy in Australia. Bioenergy production can have either positive or negative impacts. Although only the export fraction of grains and sugar was used to estimate first generation biofuels so that domestic food security was not affected, it would have an impact on food supply elsewhere. Environmental impacts on soil, water and biodiversity can be significant because of the large land base involved, and the likely use of intensive harvest regimes. These require careful management. Social impacts could be significant if there were to be large‐scale change in land use or management. In addition, although the economic considerations of feedstock production were not covered in this article, they will be the ultimate drivers of industry development. They are uncertain and are highly dependent on government policies (e.g. the price on carbon, GHG mitigation and renewable energy targets, mandates for renewable fuels), the price of fossil oil, and the scale of the industry.  相似文献   

19.
Closing yield gaps through higher fertilizer use increases direct greenhouse gas emissions but shares the burden over a larger production volume. Net greenhouse gas (GHG) footprints per unit product under agricultural intensification vary depending on the context, scale and accounting method. Life cycle analysis of footprints includes attributable emissions due to (i) land conversion (‘fixed cost’); (ii) external inputs used (‘variable cost’); (iii) crop production (‘agronomic efficiency’); and (iv) postharvest transport and processing (‘proportional’ cost). The interplay between fixed and variable costs results in a nuanced opportunity for intermediate levels of intensification to minimize footprints. The fertilizer level that minimizes the footprint may differ from the economic optimum. The optimization problem can be solved algebraically for quadratic crop fertilizer response equations. We applied this theory to data of palm oil production and fertilizer use from 23 plantations across the Indonesian production range. The current EU threshold requiring at least 35% emission saving for biofuel use can never be achieved by palm oil if produced: (i) on peat soils, or (ii) on mineral soils where the C debt due to conversion is larger than 20 Mg C ha?1, if the footprint is calculated using an emission ratio of N2O–N/N fertilizer of 4%. At current fertilizer price levels in Indonesia, the economically optimized N fertilizer rate is 344–394 kg N ha?1, while the reported mean N fertilizer rate is 141 kg N ha?1 yr?1 and rates of 74–277 kg N ha?1 would minimize footprints, for a N2O–N/N fertilizer ratio of 4–1%, respectively. At a C debt of 30 Mg C ha?1, these values are 200–310 kg N ha?1. Sustainable weighting of ecology and economics would require a higher fertilizer/yield price ratio, depending on C debt. Increasing production by higher fertilizer use from current 67% to 80% of attainable yields would not decrease footprints in current production conditions.  相似文献   

20.
Oilseed rape (OSR, Brassica napus L.) is an important feedstock for biodiesel; hence, carbon dioxide (CO2), methane (CH4) and particularly fertilizer‐derived nitrous oxide (N2O) emissions during cultivation must be quantified to assess putative greenhouse gas (GHG) savings, thus creating an urgent and increasing need for such data. Substrates of nitrification [ammonium (NH4)] and denitrification [nitrate (NO3)], the predominant N2O production pathways, were supplied separately and in combination to OSR in a UK field trial aiming to: (i) produce an accurate GHG budget of fertilizer application; (ii) characterize short‐ to medium‐term variation in GHG fluxes; (iii) establish the processes driving N2O emission. Three treatments were applied twice, 1 week apart: ammonium nitrate fertilizer (NH4NO3, 69 kg‐N ha?1) mimicking the farm management, ammonium chloride (NH4Cl, 34.4 kg‐N ha?1) and sodium nitrate (NaNO3, 34.6 kg‐N ha?1). We deployed SkyLine2D for the very first time, a novel automated chamber system to measure CO2, CH4 and N2O fluxes at unprecedented high temporal and spatial resolution from OSR. During 3 weeks following the fertilizer application, CH4 fluxes were negligible, but all treatments were a net sink for CO2 (ca. 100 g CO2 m?2). Cumulative N2O emissions (ca. 120 g CO2‐eq m?2) from NH4NO3 were significantly greater (P < 0.04) than from NaNO3 (ca. 80 g CO2‐eq m?2), but did not differ from NH4Cl (ca. 100 g CO2‐eq m?2) and reduced the carbon sink of photosynthesis so that OSR was a net GHG source in the fertilizer treatment. Diurnal variation in N2O emissions, peaking in the afternoon, was more strongly associated with photosynthetically active radiation (PAR) than temperature. This suggests that the supply of carbon (C) from photosynthate may have been the key driver of the observed diurnal pattern in N2O emission and thus should be considered in future process‐based models of GHG emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号