首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Recent increases in global temperatures have affected the phenology and survival of many species of plants and animals. We investigated a case study of the effects of potential climate change on a thermally sensitive species, the loggerhead sea turtle, at a breeding location at the northerly extent of the range of regular nesting in the United States. In addition to the physical limits imposed by temperature on this ectothermic species, sea turtle primary sex ratio is determined by the temperature experienced by eggs during the middle third of incubation. We recorded sand temperatures and used historical air temperatures (ATs) at Bald Head Island, NC, to examine past and predict future sex ratios under scenarios of warming. There were no significant temporal trends in primary sex ratio evident in recent years and estimated mean annual sex ratio was 58% female. Similarly, there were no temporal trends in phenology but earlier nesting and longer nesting seasons were correlated with warmer sea surface temperature. We modelled the effects of incremental increases in mean AT of up to 7.5°C, the maximum predicted increase under modelled scenarios, which would lead to 100% female hatchling production and lethally high incubation temperatures, causing reduction in hatchling production. Populations of turtles in more southern parts of the United States are currently highly female biased and are likely to become ultra‐biased with as little as 1°C of warming and experience extreme levels of mortality if warming exceeds 3°C. The lack of a demonstrable increase in AT in North Carolina in recent decades coupled with primary sex ratios that are not highly biased means that the male offspring from North Carolina could play an increasingly important role in the future viability of the loggerhead turtle in the Western Atlantic.  相似文献   

2.
Offspring sex ratio is an important demographic parameter and, given its determination by incubation temperature in sea turtles, might be a key factor for their conservation under climate warming. An appealing approach to estimate hatchling sex ratios is to measure sand temperatures at nest depth and deduce hatchling sex ratios from a beforehand-established relationship of hatchling sex ratio and sand temperature. Such estimates will only be accurate though if metabolic heat produced by the embryos is considered. Judging whether metabolic heating has a potential effect on hatchling sex ratios without actually measuring temperature within clutches would greatly facilitate monitoring protocols. We tested for a relationship between the amount of metabolic heating and the number of developed embryos as well as clutch size in the largest known loggerhead sea turtle (Caretta caretta) population of the Mediterranean on Zakynthos (Greece). Temperatures were measured within 20 nests as well as at a reference site in the sand at nest depth. Metabolic heating was detected, but only during the last third of the incubation period did nests heat up considerably (1.6 °C on average) above the temperature of the surrounding sand. During the middle third of incubation, when sex is determined, the amount of metabolic heating was negligible. The amount of metabolic heating during the last third of the incubation duration was significantly correlated to the number of offspring developed to at least about 75% of incubation duration. This factor explained nearly 50% of variation in metabolic heating. Metabolic heating was also significantly correlated to clutch size. Given that clutch size within the Mediterranean is largest in Zakynthos loggerheads, we conclude that metabolic heating can be ignored in the estimate of hatchling sex ratios in Mediterranean loggerhead populations. These results thus provide the basis for a feasible monitoring of hatchling sex ratios in the loggerhead sea turtle in the Mediterranean.  相似文献   

3.
Crocodilians have temperature-dependent sex determination (TSD) in which incubation temperature determines sex of embryo. Global warming is expected to alter hatchling sex ratio, leading to the extinction of small populations. Regional climate influence on crocodile nest microclimate and hatchlings' characteristics is poorly known. Here, microclimate in natural nests of American crocodile (Crocodylus acutus) and its relation with incubation length, hatchling sex and nesting success was studied in Banco Chinchorro Biosphere Reserve (Mexico) from 2007 to 2010. Temperature and relative humidity in different locations within and outside the nests were registered by data loggers. Incident solar radiation above nest was calculated from hemispheric photographs. Incubation length, proportion of hatchling reaching complete development and hatchling sex were determined at hatching. Nest temperatures exhibited a cyclic daily fluctuation due to solar radiation, which is the major heat source for nests. Clutch temperature was relatively stable and its daily amplitude was negatively correlated with clutch depth and size. Rainfall was the major source of clutch temperature decrease. Clutch and metabolic temperatures increased significantly during incubation. A small sample size failed to demonstrate a statistical relationship between length of incubation and mean clutch temperature. Proportion of embryos reaching complete development depended on maximum and minimum clutch temperature, maximum daily amplitude of clutch temperature and maximum decrease in clutch temperature on a period ≤4 day. Results confirmed a Female-Male-Female TSD pattern for C. acutus, with 31 and 32.5 °C as possible pivotal temperatures. Population and hatchling sex ratios were male-biased and fate of crocodiles of Banco Chinchorro could depend on the magnitude of temperature increase in the future.  相似文献   

4.
The alligator snapping turtle, Macrochelys temminckii, exhibits type II temperature-dependent sex determination (TSD), wherein females are produced at high and low incubation temperatures. This TSD pattern is well studied at constant temperatures, but little work has focused on sex ratios in natural nests that experience daily and seasonal temperature fluctuations. We monitored nesting activity of reintroduced Macrochelys temminckii at Tishomingo National Wildlife Refuge in 2010–2011. Nests located prior to predation were excavated to determine clutch size and the eggs were reburied with a temperature data logger to collect nest temperatures. Overall, 24% of nests were protected with wire mesh prior to predation, and the average clutch size in intact nests was 22.4 eggs. Nest predation rates in the study population will likely approach 100% if nest protection efforts do not continue. Temperature profiles were used to compare estimated sex ratios using two methods—mean nest temperature during middle third of incubation and the degree-day model—to actual sex ratios in naturally incubated Macrochelys temminckii nests. The sex ratio in all 2010 recruits was female-biased (91.8% female); 2011 nests did not produce any hatchlings, likely the result of severe drought. The predicted sex ratios based on mean nest temperature and the degree-day model matched actual sex ratios in the warmer nests (0% male), but the degree-day model estimate proved more accurate in the cooler nest. A strongly skewed population sex ratio could become a threat to this reintroduced population if the strongly female-biased sex ratio in 2010 reflects a long-term trend.  相似文献   

5.
Temperature‐dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.  相似文献   

6.
Understanding how climate change impacts species and ecosystems is integral to conservation. When studying impacts of climate change, warming temperatures are a research focus, with much less attention given to extreme weather events and their impacts. Here, we show how localized, extreme rainfall events can have a major impact on a species that is endangered in many parts of its range. We report incubation temperatures from the world's largest green sea turtle rookery, during a breeding season when two extreme rainfall events occurred. Rainfall caused nest temperatures to drop suddenly and the maximum drop in temperature for each rain‐induced cooling averaged 3.6°C (n = 79 nests, min = 1.0°C, max = 7.4°C). Since green sea turtles have temperature‐dependent sex determination, with low incubation temperatures producing males, such major rainfall events may have a masculinization effect on primary sex ratios. Therefore, in some cases, extreme rainfall events may provide a “get‐out‐of‐jail‐free card” to avoid complete feminization of turtle populations as climate warming continues.  相似文献   

7.
Temperature and the life-history strategies of sea turtles   总被引:1,自引:0,他引:1  
1. 1. Sea turtles have a high fecundity, high mortality, great longevity life history strategy.
2. 2. With the exception of the leatherback, turtle distribution is constrained by the 20°C surface isotherm.
3. 3. All sea turtles exhibit temperature-dependent sex determination (TSD) with pivotal temperatures close to 29°C.
4. 4. It is suggested that hatchling sex ratio will vary chaotically because of TSD.
5. 5. Because of TSD and natal homing, sea turtles are likely to be adversely affected by global warming.
6. 6. TSD and global warming have implications for conservation/management of sea turtles.
  相似文献   

8.
9.
Sex determination and hatching success in sea turtles is temperature dependent and as a result global warming poses a threat to sea turtles. Warmer sand temperatures may skew sea turtle population′s sex ratios towards predominantly females and decrease hatching success. Therefore, understanding the rates at which sand temperatures are likely to increase as climate change progresses is warranted. We recorded sand temperature and used historical sea surface and air temperature to model past and to predict future sand temperature under various scenarios of global warming at key sea turtle nesting grounds (n = 7) used by the northern Great Barrier Reef (nGBR) green turtle, Chelonia mydas, population. Reconstructed temperatures from 1990 to the present suggest that sand temperatures at the nesting sites studied have not changed significantly during the last 18 years. Current thermal profile at the nesting grounds suggests a bias towards female hatchling production into this population. Inter-beach thermal variance was observed at some nesting grounds with open areas in the sand dune at northern facing beaches having the warmest incubating environments. Our model projections suggest that a near complete feminization of hatchling output into this population will occur by 2070 under an extreme scenario of climate change (A1T emission scenario). Importantly, we found that some nesting grounds will still produce male hatchlings, under the most extreme scenario of climate change, this finding differs from predictions for other locations. Information from this study provides a better understanding of possible future changes in hatching success and sex ratios at each site and identifies important male producing regions. This allowed us to suggest strategies that can be used at a local scale to offset some of the impacts of warmer incubating temperatures to sea turtles.  相似文献   

10.
Temperature-dependent sex determination (TSD) is widespread in reptiles, yet its adaptive significance and mechanisms for its maintenance remain obscure and controversial. Comparative analyses identify an ancient origin of TSD in turtles, crocodiles and tuatara, suggesting that this trait should be advantageous in order to persist. Based on this assumption, researchers primarily, and with minimal success, have employed a model to examine sex-specific variation in hatchling phenotypes and fitness generated by different incubation conditions. The unwavering focus on different incubation conditions may be misplaced at least in the many turtle species in which hatchlings overwinter in the natal nest. If overwintering temperatures differentially affect fitness of male and female hatchlings, TSD might be maintained adaptively by enabling embryos to develop as the sex best suited to those overwintering conditions. We test this novel hypothesis using the painted turtle (Chrysemys picta), a species with TSD in which eggs hatch in late summer and hatchlings remain within nests until the following spring. We used a split-clutch design to expose field-incubated hatchlings to warm and cool overwintering (autumn–winter–spring) regimes in the laboratory and measured metabolic rates, energy use, body size and mortality of male and female hatchlings. While overall mortality rates were low, males exposed to warmer overwintering regimes had significantly higher metabolic rates and used more residual yolk than females, whereas the reverse occurred in the cool temperature regime. Hatchlings from mixed-sex nests exhibited similar sex-specific trends and, crucially, they were less energy efficient and grew less than same-sex hatchlings that originated from single-sex clutches. Such sex- and incubation-specific physiological adaptation to winter temperatures may enhance fitness and even extend the northern range of many species that overwinter terrestrially.  相似文献   

11.
For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle (Chelonia mydas), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2-4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.  相似文献   

12.
There are major concerns about the ecological impact of extreme weather events. In the oceans, marine heatwaves (MHWs) are an increasing threat causing, for example, recent devastation to coral reefs around the world. We show that these impacts extend to adjacent terrestrial systems and could negatively affect the breeding of endangered species. We demonstrate that during an MHW that resulted in major coral bleaching and mortality in a large, remote marine protected area, anomalously warm temperatures also occurred on sea turtle nesting beaches. Granger causality testing showed that variations in sea surface temperature strongly influenced sand temperatures on beaches. We estimate that the warm conditions on both coral reefs and sandy beaches during the MHW were unprecedented in the last 70 years. Model predictions suggest that the most extreme female-biased hatchling sex ratio and the lowest hatchling survival in nests in the last 70 years both occurred during the heatwave. Our work shows that predicted increases in the frequency and intensity of MHWs will likely have growing impacts on sea turtle nesting beaches as well as other terrestrial coastal environments.  相似文献   

13.
The adaptive significance of temperature-dependent sex determination (TSD) in reptiles remains unknown decades after TSD was first identified in this group. Concurrently, there is growing concern about the effect that rising temperatures may have on species with TSD, potentially producing extremely biased sex ratios or offspring of only one sex. The current state-of the-art in TSD research on sea turtles is reviewed here and, against current paradigm, it is proposed that TSD provides an advantage under warming climates. By means of coadaptation between early survival and sex ratios, sea turtles are able to maintain populations. When offspring survival declines at high temperatures, the sex that increases future fecundity (females) is produced, increasing resilience to climate warming. TSD could have helped reptiles to survive mass extinctions in the past via this model. Flaws in research on sex determination in sea turtles are also identified and it is suggested that the development of new techniques will revolutionize the field.  相似文献   

14.
Few studies have looked into climate change resilience of populations of wild animals. We use a model higher vertebrate, the green sea turtle, as its life history is fundamentally affected by climatic conditions, including temperature‐dependent sex determination and obligate use of beaches subject to sea level rise (SLR). We use empirical data from a globally important population in West Africa to assess resistance to climate change within a quantitative framework. We project 200 years of primary sex ratios (1900–2100) and create a digital elevation model of the nesting beach to estimate impacts of projected SLR. Primary sex ratio is currently almost balanced, with 52% of hatchlings produced being female. Under IPCC models, we predict: (a) an increase in the proportion of females by 2100 to 76%–93%, but cooler temperatures, both at the end of the nesting season and in shaded areas, will guarantee male hatchling production; (b) IPCC SLR scenarios will lead to 33.4%–43.0% loss of the current nesting area; (c) climate change will contribute to population growth through population feminization, with 32%–64% more nesting females expected by 2120; (d) as incubation temperatures approach lethal levels, however, the population will cease growing and start to decline. Taken together with other factors (degree of foraging plasticity, rookery size and trajectory, and prevailing threats), this nesting population should resist climate change until 2100, and the availability of spatial and temporal microrefugia indicates potential for resilience to predicted impacts, through the evolution of nest site selection or changes in nesting phenology. This represents the most comprehensive assessment to date of climate change resilience of a marine reptile using the most up‐to‐date IPCC models, appraising the impacts of temperature and SLR, integrated with additional ecological and demographic parameters. We suggest this as a framework for other populations, species and taxa.  相似文献   

15.
We compared incubation temperatures in nests (n=32) of the green turtle (Chelonia mydas) on Ascension Island in relation to sand temperatures of control sites at nest depth. Intrabeach thermal variation was low, whereas interbeach thermal variation was high in both control and nest sites. A marked rise in temperature was recorded in nests from 30% to 40% of the way through the incubation period and attributed to metabolic heating. Over the entire incubation period, metabolic heating accounted for a mean rise in temperature of between 0.07 degrees and 2.86 degrees C within nests. During the middle third of incubation, when sex is thought to be determined, this rise in temperature ranged between 0.07 degrees and 2.61 degrees C. Metabolic heating was related to both the number of eggs laid and the total number of hatchlings/embryos produced in a clutch. For 32 clutches in which temperature was recorded, we estimate that metabolic heating accounted for a rise of up to 30% in the proportion of females produced within different clutches. Previous studies have dismissed any effect of metabolic heating on the sex ratio of marine turtle hatchlings. Our results imply that metabolic heating needs to be considered when estimating green turtle hatchling sex ratios.  相似文献   

16.
Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current ‘cold’ nests (mean = 23.2 °C, range 10–33 °C) and future ‘hot’ nests (27.0 °C, 14–37 °C). ‘Hot’ incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot‐incubated hatchlings had higher annual mortality (99%, 97%) than cold‐incubated (11%, 58%) or wild‐born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78– 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52– 1.0) with mean times to extinction of 18–44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest‐site choices. Over the period 1992–2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest‐site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments.  相似文献   

17.
Abstract The jacky dragon, Amphibolurus muricatus (White, ex Shaw 1790) is a medium sized agamid lizard from the southeast of Australia. Laboratory incubation trials show that this species possesses temperature‐dependent sex determination. Both high and low incubation temperatures produced all female offspring, while varying proportions of males hatched at intermediate temperatures. Females may lay several clutches containing from three to nine eggs during the spring and summer. We report the first field nest temperature recordings for a squamate reptile with temperature‐dependent sex determination. Hatchling sex is determined by nest temperatures that are due to the combination of daily and seasonal weather conditions, together with maternal nest site selection. Over the prolonged egg‐laying season, mean nest temperatures steadily increase. This suggests that hatchling sex is best predicted by the date of egg laying, and that sex ratios from field nests will vary over the course of the breeding season. Lizards hatching from eggs laid in the spring (October) experience a longer growing season and should reach a larger body size by the beginning of their first reproductive season, compared to lizards from eggs laid in late summer (February). Adult male A. muricatus attain a greater maximum body size and have relatively larger heads than females, possibly as a consequence of sexual selection due to male‐male competition for territories and mates. If reproductive success in males increases with larger body size, then early hatching males may obtain a greater fitness benefit as adults, compared to males that hatch in late summer. We hypothesize that early season nests should produce male‐biased sex ratios, and that this provides an adaptive explanation for temperature‐dependent sex determination in A. muricatus.  相似文献   

18.
Although the adaptive significance of temperature-dependent sex determination (TSD) remains a puzzle, recent models implicate a seasonal bias in offspring sex production that translates into sex-specific fitness benefits later in life. Sex-specific emergence has been linked to fitness gains in some fish, birds and reptiles, but field data supporting the occurrence of a seasonal pattern of sex ratios in oviparous lizards are lacking. We tested the hypothesis that patterns of nest site selection and seasonal temperature changes combine to inhibit the materialization of sex-biased hatching times in a population of water dragons (Intellagama lesueurii). As predicted, a seasonal increase in air and nest temperatures resulted in a sex bias by nesting date; male-producing clutches were laid 17.8 days sooner than female-producing clutches, on average. However, the seasonal ramping of nest temperatures also caused shorter relative incubation periods in the later, all-female clutches. As a consequence of this developmental ‘catch-up’, the mean hatching date for male-producing nests preceded the mean hatching date for female-producing nests by only 7.2 days. We suggest that a contracted distribution of hatching dates compared to the distribution of oviposition dates represents a general pattern for oviparous reptiles in seasonal climates, which in TSD species may largely offset the temporal disparity in nesting dates between the sexes. Although data are needed for other TSD species, such minor age differences between male and female hatchlings may not translate into fitness differences later in life, an assumption of some models for the evolution and maintenance of TSD.  相似文献   

19.
Incubation temperature influences hatchling phenotypes such as sex, size, shape, color, behavior, and locomotor performance in many reptiles, and there is growing concern that global warming might adversely affect reptile populations by altering frequencies of hatchling phenotypes. Here I overview a recent theoretical model used to predict hatchling sex of reptiles with temperature-dependent sex determination. This model predicts that sex ratios will be fairly robust to moderate global warming as long as eggs experience substantial daily cyclic fluctuations in incubation temperatures so that embryos are exposed to temperatures that inhibit embryonic development for part of the day. I also review studies that examine the influence of incubation temperature on posthatch locomotion performance and growth because these are the traits that are likely to have the greatest effect on hatchling fitness. The majority of these studies used artificial constant-temperature incubation, but some have addressed fluctuating incubation temperature regimes. Although the number of studies is small, it appears that fluctuating temperatures may enhance hatchling locomotor performance. This finding should not be surprising, given that the majority of natural reptile nests are relatively shallow and therefore experience daily fluctuations in incubation temperature.  相似文献   

20.
For many species of reptile, crucial demographic parameters such as embryonic survival and individual sex (male or female) depend on ambient temperature during incubation. While much has been made of the role of climate on offspring sex ratios in species with temperature‐dependent sex determination (TSD), the impact of variable sex ratio on populations is likely to depend on how limiting male numbers are to female fecundity in female‐biased populations, and whether a climatic effect on embryonic survival overwhelms or interacts with sex ratio. To examine the sensitivity of populations to these interacting factors, we developed a generalized model to explore the effects of embryonic survival, hatchling sex ratio, and the interaction between these, on population size and persistence while varying the levels of male limitation. Populations with TSD reached a greater maximum number of females compared to populations with GSD, although this was often associated with a narrower range of persistence. When survival depended on temperature, TSD populations persisted over a greater range of temperatures than GSD populations. This benefit of TSD was greatly reduced by even modest male limitation, indicating very strong importance of this largely unmeasured biologic factor. Finally, when males were not limiting, a steep relationship between sex ratio and temperature favoured population persistence across a wider range of climates compared to the shallower relationships. The opposite was true when males were limiting – shallow relationships between sex ratio and temperature allowed greater persistence. The results highlight that, if we are to predict the response of populations with TSD to climate change, it is imperative to 1) accurately quantify the extent to which male abundance limits female fecundity, and 2) measure how sex ratios and peak survival coincide over climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号