首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
What are the limitations of models that predict the behavior of an ecological community based on a single type of species interaction? Using plant–pollinator network models as an example, we contrast the predicted vulnerability of a community to secondary extinctions under the assumption of purely mutualistic interactions versus mutualistic and competitive interactions. We find that competition among plant species increases the risk of secondary extinctions and extinction cascades. Simulations over a number of different network structures indicate that this effect is stronger in larger networks, more strongly connected networks and networks with higher plant:pollinator ratios. We conclude that efforts to model plant–pollinator communities will systematically over‐estimate community robustness to species loss if plant competition is ignored. However, because the effect of plant competition depends on network architecture, and because characterization of plant competition is work intensive, we suggest that efforts to account for plant competition in plant–pollinator network models should be focused on large, strongly connected networks with high plant:pollinator ratios.  相似文献   

2.
Nested architecture is distinctive in plant-animal mutualistic networks. However, to date an integrative and quantitative explanation has been lacking. It is evident that species often switch their interactive partners in real-world mutualistic networks such as pollination and seed-dispersal networks. By incorporating an interaction switch into a novel multi-population model, we show that the nested architecture rapidly emerges from an initially random network. The model allowing interaction switches between partner species produced predictions which fit remarkably well with observations from 81 empirical networks. Thus, the nested architecture in mutualistic networks could be an intrinsic physical structure of dynamic networks and the interaction switch is likely a key ecological process that results in nestedness of real-world networks. Identifying the biological processes responsible for network structures is thus crucial for understanding the architecture of ecological networks.  相似文献   

3.
Studying how habitat loss affects the tolerance of ecological networks to species extinction (i.e. their robustness) is key for our understanding of the influence of human activities on natural ecosystems. With networks typically occurring as local interaction networks interconnected in space (a meta-network), we may ask how the loss of specific habitat fragments affects the overall robustness of the meta-network. To address this question, for an empirical meta-network of plants, herbivores and natural enemies we simulated the removal of habitat fragments in increasing and decreasing order of area, age and connectivity for plant extinction and the secondary extinction of herbivores, natural enemies and their interactions. Meta-network robustness was characterized as the area under the curve of remnant species or interactions at the end of a fragment removal sequence. To pinpoint the effects of fragment area, age and connectivity, respectively, we compared the observed robustness for each removal scenario against that of a random sequence. The meta-network was more robust to the loss of old (i.e. long-fragmented), large, connected fragments than of young (i.e. recently fragmented), small, isolated fragments. Thus, young, small, isolated fragments may be particularly important to the conservation of species and interactions, while contrary to our expectations larger, more connected fragments contribute little to meta-network robustness. Our findings highlight the importance of young, small, isolated fragments as sources of species and interactions unique to the regional level. These effects may largely result from an unpaid extinction debt, whereby younger fragments are likely to lose species over time. Yet, there may also be more long-lasting effects from cultivated lands (e.g. water, fertilizers and restricted cattle grazing) and network complexity in small, isolated fragments. Such fragments may sustain important biological diversity in fragmented landscapes, but maintaining their conservation value may depend on adequate restoration strategies.  相似文献   

4.
Understanding and predicting species extinctions and coextinctions is a major goal of ecological research in the face of a biodiversity crisis. Typically, models based on network topology are used to simulate coextinctions in mutualistic networks. However, such topological models neglect two key biological features of species interactions: variation in the intrinsic dependence of species on the mutualism, and variation in the relative importance of each interacting partner. By incorporating both types of variation, we developed a stochastic coextinction model capable of simulating extinction cascades far more complex than those observed in previous topological models. Using a set of empirical mutualistic networks, we show that the traditional topological model may either underestimate or overestimate the number and likelihood of coextinctions, depending on the intrinsic dependence of species on the mutualism. More importantly, contrary to topological models, our stochastic model predicts extinction cascades to be more likely in highly connected mutualistic communities.  相似文献   

5.
Research on ecological communities, and plant–pollinator mutualistic networks in particular, has increasingly benefited from the theory and tools of complexity science. Nevertheless, up to now there have been few attempts to investigate the interplay between the structure of real pollination networks and their dynamics. This study is one of the first contributions to explore this issue. Biological invasions, of major concern for conservation, are also poorly understood from the perspective of complex ecological networks. In this paper we assess the role that established alien species play within a host community by analyzing the temporal changes in structural network properties driven by the removal of non‐native plants. Three topological measures have been used to represent the most relevant structural properties for the stability of ecological networks: degree distribution, nestedness, and modularity. Therefore, we investigate for a detailed pollination network, 1) how its dynamics, represented as changes in species abundances, affect the evolution of its structure, 2) how topology relates to dynamics focusing on long‐term species persistence; and 3) how both structure and dynamics are affected by the removal of alien plant species. Network dynamics were simulated by means of a stochastic metacommunity model. Our results showed that established alien plants are important for the persistence of the pollination network and for the maintenance of its structure. Removal of alien plants decreased the likelihood of species persistence. On the other hand, both the full network and the subset native network tended to lose their structure through time. Nevertheless, the structure of the full network was better preserved than the structure of the network without alien plants. Temporal topological shifts were evident in terms of degree distribution, nestedness, and modularity. However the effects of removing alien plants were more pronounced for degree distribution and modularity of the network. Therefore, elimination of alien plants affected the evolution of the architecture of the interaction web, which was closely related to the higher species loss found in the network where alien plants were removed.  相似文献   

6.
Most studies on ecological networks consider only a single interaction type (e.g. competitive, predatory or mutualistic), and try to developrules for system stability based exclusively on properties of this interaction type. However, the stability of ecological networks may be more dependent on the way different interaction types are combined in real communities. To address this issue, we start by compiling an ecological network in the Doñana Biological Reserve, southern Spain, with 390 species and 798 mu-tualistic and antagonistic interactions. We characterize network structure by looking at how mutualistic and antagonistic interactions are combined across all plant species. Both the ratio of mutualistic to antagonistic interactions per plant, and the number of basic modules with an antagonistic and a mutualistic interaction are very heterogeneous across plant species, with a few plant species showing very high values for these parameters. To assess the implications of these network patterns on species diversity, we study analytically and by simulation a model of this ecological network. We find that the observed correlation between strong interaction strengths and high mutualistic to antagonistic ratios in a few plant species significantly increases community diversity. Thus, to predict the persistence of biodiversity we need to understand how interaction strength and the architecture of ecological networks with different interaction types are combined.  相似文献   

7.
Species and processes in ecosystems are part of multi‐trophic interaction networks. Plants represent the lowest trophic level in terrestrial ecosystems, and experiments have shown a stabilizing effect of plant diversity on higher trophic levels. Such evidence has been mainly collected in experimental grasslands. Forests are structurally more complex than grasslands and support the majority of the global biodiversity, but studies on multi‐trophic interaction networks are missing in experimental tree diversity gradients. In a forest diversity experiment in southeast China, we examined how tree diversity affects the structure of trophobiotic networks. Trophobioses are tri‐trophic interactions between plants, sap‐sucking Hemiptera and honeydew‐collecting ants that can be subdivided into a largely mutualistic Hemiptera–ant and an antagonistic plant–Hemiptera network. We inspected almost 7000 trees in 146 plots ranging from monocultures to 16 tree species mixtures and found 194 trophobioses consisting of 15 tree, 33 Hemiptera and 18 ant species. We found that tree diversity increased the proportion of trees harboring trophobioses. Consistent with the prediction that mutualistic and antagonistic networks respond differently to changing environments, we found that the generality index of the mutualistic Hemiptera–ant but not the antagonistic plant–Hemiptera network increased with tree diversity. High generality, maintained by high tree diversity, might correspond to higher functional stability. Hence, our results indicate that tree diversity could increase via bottom–up processes the robustness of ant–Hemiptera associations against changing environmental conditions. In turn, the plant–Hemiptera network was highly complementary, suggesting that host‐specific Hemiptera species may be vulnerable to co‐extinction if their host plants disappear. Based on our results, we provide possible future research directions to further disentangle the bottom–up effect of tree diversity on the structure of trophobiotic networks. Synthesis It is now widely accepted that plant diversity promotes ecosystem functionality and stability. However, it is still largely unknown how plant diversity affects interactions between trophic levels and if different interaction types are affected differently. Using a tri‐trophic study system consisting of plants, sap‐sucking Hemiptera, and ants we provide evidence that increasing local plant diversity stabilizes the mutualistic Hemiptera–ant but not the antagonistic plant–Hemiptera networks. Our results suggest that bottom–up effects of plant diversity on trophic interactions might generally depend on the type of interaction (mutualistic versus antagonistic) considered.  相似文献   

8.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

9.
There is a strong trend of declining populations in many species of both animals and plants. Dwindling numbers of species can eventually lead to their functional extinction. Functional, or ecological, extinction occurs when a species becomes too rare to fulfill its ecological, interactive role in the ecosystem, leading to true (numerical) extinction of other depending species. Recent theoretical work on food webs suggests that the frequency of functional extinction might be surprisingly high. However, little is known about the risk of functional species extinctions in networks with other types of interactions than trophic ones. Here, we explore the frequency of functional extinctions in model ecological networks having different proportions of antagonistic and mutualistic links. Furthermore, we investigate the topological relationship between functionally and numerically extinct species. We find that (1) the frequency of functional extinctions is higher in networks containing a mixture of antagonistic and mutualistic interactions than in networks with only one type of interaction, (2) increased mortality rate of species having both mutualistic and antagonistic links is more likely to lead to extinction of another species than to extinction of the species itself compared to species having only mutualistic or antagonistic links, and (3) trophic distance (shortest path) between functionally and numerically extinct species is, on average, longer than one, indicating the importance of indirect effects. These results generalize the findings of an earlier study on food webs, demonstrating the potential importance of functional extinction in a variety of ecological network types.  相似文献   

10.
Recent research on ecological networks suggests that mutualistic networks are more nested than antagonistic ones and, as a result, they are more robust against chains of extinctions caused by disturbances. We evaluate whether mutualistic networks are more nested than comensalistic and antagonistic networks, and whether highly nested, host-epiphyte comensalistic networks fit the prediction of high robustness against disturbance. A review of 59 networks including mutualistic, antagonistic and comensalistic relationships showed that comensalistic networks are significantly more nested than antagonistic and mutualistic networks, which did not differ between themselves. Epiphyte-host networks from old-growth forests differed from those from disturbed forest in several topological parameters based on both qualitative and quantitative matrices. Network robustness increased with network size, but the slope of this relationship varied with nestedness and connectance. Our results indicate that interaction networks show complex responses to disturbances, which influence their topology and indirectly affect their robustness against species extinctions.  相似文献   

11.
The analysis of ecological networks is generally bottom‐up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host–parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail‐rich reference communities with known modes of interaction can inform our understanding of detail‐sparse focal communities. With this top‐down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant–pollinator and antagonistic host–parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant–pollinator communities than the antagonistic host–parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite–termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well‐characterized communities.  相似文献   

12.
Chuan Yan  Zhibin Zhang 《Oikos》2019,128(8):1147-1157
Despite the prevalence of context‐dependent interaction transitions in ecological systems, their impacts on persistence and interaction diversity have scarcely been explored in complex ecological networks. By using multispecies bi‐directional and unidirectional consumer–resource models, representing a continuum of interaction transitions (sign change of interaction outcomes), we investigated the effects of structural interaction transitions on persistence (the fraction of remaining species) and long‐term interaction outcomes in random ecological networks. We found that high interaction strength of exploiting resources generally decreased persistence, and high strength of providing resources increased persistence when the strength of exploiting resources was low in more complex networks; also, the networks with high persistence had a high proportion of mutualistic interactions relative to antagonistic interactions present initially and over the long term. The shifting of interaction strengths shaped the long‐term interaction compositions. Meanwhile, population dynamics, especially species extinction, affected the difference between initial and long‐term interactions. Based on classical consumer–resource theory, these results establish a transitional continuum of interaction outcomes in ecological networks and imply a theoretical association among interaction transition, community persistence and interaction diversity.  相似文献   

13.
Ecological network approaches may contribute to conservation practices by quantifying within‐community importance of species. In mutualistic plant‐pollinator systems, such networks reflect potential pollination of the plants and a considerable portion of the energy consumption by the pollinators, two key components for each party. Here, we used two different sampling approaches to describe mutualistic plant‐hummingbird networks from a cloud forest in the Colombian Western Andes, home to the Colorful Puffleg Eriocnemis mirabilis, an endemic and critically endangered hummingbird. We contrast networks between two localities (a protected area inside a National park vs. its buffer zone) and across sampling methods (floral visitation vs. pollen loads) to assess how the network structure and the importance of each hummingbird species within the networks may change. Visitation networks were characterized as having higher sampling completeness, yet pollen load network recorded more pollen types than plant species recorded by visitation. Irrespective of the sampling methods, the Colorful Puffleg was one of the most important hummingbird species in the network within the protected area inside the National park, but not in the buffer zone. Moreover, most species‐level network indices were related to hummingbirds’ abundance. This suggests that conservation initiatives aimed at the endangered Colorful Puffleg may both help on the survival of this endangered hummingbird, as well as on maintaining its key role in the mutualistic interaction network inside the National Park. Our study illustrates how conservation practitioners could assess the local importance of endangered species using interaction network approaches.  相似文献   

14.
Tolerance of pollination networks to species extinctions   总被引:12,自引:0,他引:12  
Mutually beneficial interactions between flowering plants and animal pollinators represent a critical 'ecosystem service' under threat of anthropogenic extinction. We explored probable patterns of extinction in two large networks of plants and flower visitors by simulating the removal of pollinators and consequent loss of the plants that depend upon them for reproduction. For each network, we removed pollinators at random, systematically from least-linked (most specialized) to most-linked (most generalized), and systematically from most- to least-linked. Plant species diversity declined most rapidly with preferential removal of the most-linked pollinators, but declines were no worse than linear. This relative tolerance to extinction derives from redundancy in pollinators per plant and from nested topology of the networks. Tolerance in pollination networks contrasts with catastrophic declines reported from standard food webs. The discrepancy may be a result of the method used: previous studies removed species from multiple trophic levels based only on their linkage, whereas our preferential removal of pollinators reflects their greater risk of extinction relative to that of plants. In both pollination networks, the most-linked pollinators were bumble-bees and some solitary bees. These animals should receive special attention in efforts to conserve temperate pollination systems.  相似文献   

15.
In network ecology, landscape‐scale processes are often overlooked, yet there is increasing evidence that species and interactions spill over between habitats, calling for further study of interhabitat dependencies. Here, we investigate how species connect a mosaic of habitats based on the spatial variation of their mutualistic and antagonistic interactions using two multilayer networks, combining pollination, herbivory and parasitism in the UK and New Zealand. Developing novel methods of network analysis for landscape‐scale ecological networks, we discovered that few plant and pollinator species acted as connectors or hubs, both within and among habitats, whereas herbivores and parasitoids typically have more peripheral network roles. Insect species’ roles depend on factors other than just the abundance of taxa in the lower trophic level, exemplified by larger Hymenoptera connecting networks of different habitats and insects relying on different resources across different habitats. Our findings provide a broader perspective for landscape‐scale management and ecological community conservation.  相似文献   

16.
Within ecological communities, species engage in myriad interaction types, yet empirical examples of hybrid species interaction networks composed of multiple types of interactions are still scarce. A key knowledge gap is understanding how the structure and stability of such hybrid networks are affected by anthropogenic disturbance. Using 15,169 interaction observations, we constructed 16 hybrid herbivore‐plant‐pollinator networks along an agricultural intensification gradient to explore changes in network structure and robustness to local extinctions. We found that agricultural intensification led to declines in modularity but increases in nestedness and connectance. Notably, network connectance, a structural feature typically thought to increase robustness, caused declines in hybrid network robustness, but the directionality of changes in robustness along the gradient depended on the order of local species extinctions. Our results not only demonstrate the impacts of anthropogenic disturbance on hybrid network structure, but they also provide unexpected insights into the structure‐stability relationship of hybrid networks.  相似文献   

17.
Knowledge of species composition and their interactions, in the form of interaction networks, is required to understand processes shaping their distribution over time and space. As such, comparing ecological networks along environmental gradients represents a promising new research avenue to understand the organization of life. Variation in the position and intensity of links within networks along environmental gradients may be driven by turnover in species composition, by variation in species abundances and by abiotic influences on species interactions. While investigating changes in species composition has a long tradition, so far only a limited number of studies have examined changes in species interactions between networks, often with differing approaches. Here, we review studies investigating variation in network structures along environmental gradients, highlighting how methodological decisions about standardization can influence their conclusions. Due to their complexity, variation among ecological networks is frequently studied using properties that summarize the distribution or topology of interactions such as number of links, connectance, or modularity. These properties can either be compared directly or using a procedure of standardization. While measures of network structure can be directly related to changes along environmental gradients, standardization is frequently used to facilitate interpretation of variation in network properties by controlling for some co‐variables, or via null models. Null models allow comparing the deviation of empirical networks from random expectations and are expected to provide a more mechanistic understanding of the factors shaping ecological networks when they are coupled with functional traits. As an illustration, we compare approaches to quantify the role of trait matching in driving the structure of plant–hummingbird mutualistic networks, i.e. a direct comparison, standardized by null models and hypothesis‐based metaweb. Overall, our analysis warns against a comparison of studies that rely on distinct forms of standardization, as they are likely to highlight different signals. Fostering a better understanding of the analytical tools available and the signal they detect will help produce deeper insights into how and why ecological networks vary along environmental gradients.  相似文献   

18.
19.
Facilitation is a positive interaction assembling ecological communities and preserving global biodiversity. Although communities acquire emerging properties when many species interact, most of our knowledge about facilitation is based on studies between pairs of species. To understand how plant facilitation preserves biodiversity in complex ecological communities, we propose to move from the study of pairwise interactions to the network approach. We show that facilitation networks behave as mutualistic networks do, characterized by a nonrandom, nested structure of plant-plant interactions in which a few generalist nurses facilitate a large number of species while the rest of the nurses facilitate only a subset of them. Consequently, generalist nurses shape a dense and highly connected network. Interestingly, such generalist nurses are the most abundant species in the community, making facilitation-shaped communities strongly resistant to extinction, as revealed by coextinction simulations. The nested structure of facilitative networks explains why facilitation, by preventing extinction, preserves biodiversity.  相似文献   

20.
The topology of ecological interaction webs holds important information for theories of coevolution, biodiversity, and ecosystem stability . However, most previous network analyses solely counted the number of links and ignored variation in link strength. Because of this crude resolution, results vary with scale and sampling intensity, thus hampering a comparison of network patterns at different levels . We applied a recently developed quantitative and scale-independent analysis based on information theory to 51 mutualistic plant-animal networks, with interaction frequency as measure of link strength. Most networks were highly structured, deviating significantly from random associations. The degree of specialization was independent of network size. Pollination webs were significantly more specialized than seed-dispersal webs, and obligate symbiotic ant-plant mutualisms were more specialized than nectar-mediated facultative ones. Across networks, the average specialization of animal and plants was correlated, but is constrained by the ratio of plant to animal species involved. In pollination webs, rarely visited plants were on average more specialized than frequently attended ones, whereas specialization of pollinators was positively correlated with their interaction frequency. We conclude that quantitative specialization in ecological communities mirrors evolutionary trade-offs and constraints of web architecture. This approach can be easily expanded to other types of biological interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号