首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Community‐level climate change indicators have been proposed to appraise the impact of global warming on community composition. However, non‐climate factors may also critically influence species distribution and biological community assembly. The aim of this paper was to study how fire–vegetation dynamics can modify our ability to predict the impact of climate change on bird communities, as described through a widely‐used climate change indicator: the community thermal index (CTI). Potential changes in bird species assemblage were predicted using the spatially‐explicit species assemblage modelling framework – SESAM – that applies successive filters to constrained predictions of richness and composition obtained by stacking species distribution models that hierarchically integrate climate change and wildfire–vegetation dynamics. We forecasted future values of CTI between current conditions and 2050, across a wide range of fire–vegetation and climate change scenarios. Fire–vegetation dynamics were simulated for Catalonia (Mediterranean basin) using a process‐based model that reproduces the spatial interaction between wildfire, vegetation dynamics and wildfire management under two IPCC climate scenarios. Net increases in CTI caused by the concomitant impact of climate warming and an increasingly severe wildfire regime were predicted. However, the overall increase in the CTI could be partially counterbalanced by forest expansion via land abandonment and efficient wildfire suppression policies. CTI is thus strongly dependent on complex interactions between climate change and fire–vegetation dynamics. The potential impacts on bird communities may be underestimated if an overestimation of richness is predicted but not constrained. Our findings highlight the need to explicitly incorporate these interactions when using indicators to interpret and forecast climate change impact in dynamic ecosystems. In fire‐prone systems, wildfire management and land‐use policies can potentially offset or heighten the effects of climate change on biological communities, offering an opportunity to address the impact of global climate change proactively.  相似文献   

2.
To assess whether increasing numbers of Siberian vagrants observed in Europe in recent autumns can be linked to climate change, we predicted changes in the climatic suitability of the breeding ranges of 46 Siberian bird species known to show vagrancy to Europe and compared these predictions with observed changes in recorded rates of autumn vagrancy across eight European countries during the last three decades. There was a positive correlation between predicted increase in breeding range and vagrancy rates. A positive impact of climate change on range and population size could promote vagrancy, while the increasing use of such alternative migration flyways could provide adaptive advantages in a changing environment.  相似文献   

3.
Aim Broad‐scale spatial patterns of species richness are very strongly correlated with climatic variables. If there is a causal link, i.e. if climate directly or indirectly determines patterns of richness, then when the climatic variables change, richness should change in the manner that spatial correlations between richness and climate would predict. The present study tests this prediction using seasonal changes in climatic variables and bird richness. Location We used a grid of equal area quadrats (37 000 km2) covering North and Central America as far south as Nicaragua. Methods Summer and winter bird distribution data were drawn from monographs and field guides. Climatic data came from published sources. We also used remotely sensed NDVI (normalized difference vegetation index — a measure of greenness). Results Bird species richness changes temporally (between summer and winter) in a manner that is close to, but statistically distinguishable from, the change one would predict from models relating the spatial variation in richness at a single time to climatic variables. If one further takes into account the seasonal changes in NDVI and within‐season variability of temperature and precipitation, then winter and summer richness follow congruent, statistically indistinguishable patterns. Main conclusions Our results are consistent with the hypothesis that climatic variables (temperature and precipitation) and vegetation cover directly or indirectly influence patterns of bird species richness.  相似文献   

4.
Species richness is predicted to increase in the northern latitudes in the warming climate due to ranges of many southern species expanding northwards. We studied changes in the composition of the whole avifauna and in bird species richness in a period of already warming climate in Finland (in northern Europe) covering 1,100 km in south–north gradient across the boreal zone (over 300,000 km2). We compared bird species richness and species‐specific changes (for all 235 bird species that occur in Finland) in range size (number of squares occupied) and range shifts (measured as median of area of occupancy) based on bird atlas studies between 1974–1989 and 2006–2010. In addition, we tested how the habitat preference and migration strategy of species explain species‐specific variation in the change of the range size. The study was carried out in 10 km squares with similar research intensity in both time periods. The species richness did not change significantly between the two time periods. The composition of the bird fauna, however, changed considerably with 37.0% of species showing an increase and 34.9% a decrease in the numbers of occupied squares, that is, about equal number of species gained and lost their range. Altogether 95.7% of all species (225/235) showed changes either in the numbers of occupied squares or they experienced a range shift (or both). The range size of archipelago birds increased and long‐distance migrants declined significantly. Range loss observed in long‐distance migrants is in line with the observed population declines of long‐distance migrants in the whole Europe. The results show that there is an ongoing considerable species turnover due to climate change and due to land use and other direct human influence. High bird species turnover observed in northern Europe may also affect the functional diversity of species communities.  相似文献   

5.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

6.
Aim This study investigates the determinants of European‐scale patterns in tree species composition and richness, addressing the following questions: (1) What is the relative importance of environment and history? History refers to lasting effects of past large‐scale events and time‐dependent cumulative effects of ongoing processes, notably dispersal limited range dynamics. (2) Among the environmental determinants, what is the relative importance of climate, soils, and forest cover? (3) Do the answers to questions 1 and 2 differ between conifers and Fagales, the two major monophyletic groups of European trees? Location The study area comprises most of Europe (34° N–72° N and 11° W–32° E). Methods Atlas data on native distributions of 54 large tree species at 50 × 50 km resolution were linked with climatic, edaphic, and forest cover maps in a geographical information system. Unconstrained (principal components analysis using Hellinger distance transformation and detrended correspondence analysis) and constrained ordinations (redundancy analysis using Hellinger distance transformation and canonical correspondence analysis) and multiple linear regressions were used to investigate the determinants of species composition and species richness, respectively. History is expected to leave its mark as broad spatial patterns and was represented by the nine spatial terms of a cubic trend surface polynomial. Results The main floristic pattern identified by all ordinations was a latitude‐temperature gradient, while the lower axes corresponded mostly to spatial variables. Partitioning the floristic variation using constrained ordinations showed the mixed spatial‐environmental and pure spatial fractions to be much greater than the pure environmental fraction. Biplots, forward variable selection, and partial analyses all suggested climatic variables as more important floristic determinants than forest cover or soil variables. Tree species richness peaked in the mountainous regions of East‐Central and Southern Europe, except the Far West. Variation partitioning of species richness found the mixed spatial‐environmental and pure spatial fractions to be much greater than the pure environmental fraction for all species combined and Fagales, but not for conifers. The scaled regression coefficients indicated climate as a stronger determinant of richness than soils or forest cover. While the dominant patterns were similar for conifers and Fagales, conifers exhibited less predictable patterns overall, a smaller pure spatial variation fraction relative to pure environmental fraction, and a greater relative importance of climate; all differences being more pronounced for species richness than for species composition. Main conclusions The analyses suggest that history is at least as important as current environment in controlling species composition and richness of European trees, with the exception of conifer species richness. Strong support for interpreting the spatial patterns as outcomes of historical processes, notably dispersal limitation, came from the observation that many European tree species naturalize extensively outside their native ranges. Furthermore, it was confirmed that climate predominates among environmental determinants of distribution and diversity patterns at large spatial scales. Finally, the particular patterns exhibited by conifers probably reflect greater environmental specialization and greater human impact. These findings warn against expecting the European tree flora to be able track fast future climate changes on its own.  相似文献   

7.
Climate suitability models are used to make projections of species’ potential future distribution under climate change. When studying the species richness with such modeling methods, the extent of the study range is of particular importance, especially when the full range of occurrence is not considered for some species, often because of geographical or political limits. Here we examine biases induced by the use of range‐restricted occurrence data on predicted changes in species richness and predicted extinction rates, at study area margins. We compared projections of future suitable climate space for 179 bird species breeding in Iberia and North Africa (27 of them breeding only in North Africa though potential colonizers in Europe), using occurrence data from the full Western Palaearctic (WP) species range and from the often‐considered European‐restricted range. Current and future suitable climatic spaces were modeled using an ensemble forecast technique applied to five general circulation models and three climate scenarios, with eight climatic variables and eight modeling techniques. The use of range‐restricted compared to the full WP occurrence data of a species led to an underestimate of its suitable climatic space. The projected changes in species richness across the focus area (Iberia) varied considerably according to the occurrence data we used, with higher local extinction rates with European‐restricted data (on average 38 vs 12% for WP data). Modeling results for species currently breeding only in North Africa revealed potential colonization of the Iberian Peninsula (from a climatic point of view), which highlights the necessity to consider species outside the focus area if interested in forecasted changes in species richness. Therefore, the modeling of current and future species richness can lead to misleading conclusions when data from a restricted range of occurrence is used. Consequently, climate suitability models should use occurrence data from the complete distribution range of species, or at least within biogeographical areas.  相似文献   

8.
Aim We test how productivity, disturbance rate, plant functional composition and species richness gradients control changes in the composition of high‐latitude vegetation during recent climatic warming. Location Northern Fennoscandia, Europe. Methods We resampled tree line ecotone vegetation sites sampled 26 years earlier. To quantify compositional changes, we used generalized linear models to test relationships between compositional changes and environmental gradients. Results Compositional changes in species abundances are positively related to the normalized difference vegetation index (NDVI)‐based estimate of productivity gradient and to geomorphological disturbance. Competitive species in fertile sites show the greatest changes in abundance, opposed to negligible changes in infertile sites. Change in species richness is negatively related to initial richness, whereas geomorphological disturbance has positive effects on change in richness. Few lowland species have moved towards higher elevations. Main conclusions The sensitivity of vegetation to climate change depends on a complex interplay between productivity, physical and biotic disturbances, plant functional composition and richness. Our results suggest that vegetation on productive sites, such as herb‐rich deciduous forests at low altitudes, is more sensitive to climate warming than alpine tundra vegetation where grazing may have strong buffering effects. Geomorphological disturbance promotes vegetation change under climatic warming, whereas high diversity has a stabilizing effect.  相似文献   

9.
Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.  相似文献   

10.
Aim To determine relative effects of habitat type, climate and spatial pattern on species richness and composition of native and alien plant assemblages in central European cities. Location Central Europe, Belgium and the Netherlands. Methods The diversity of native and alien flora was analysed in 32 cities. In each city, plant species were recorded in seven 1‐ha plots that represented seven urban habitat types with specific disturbance regimes. Plants were classified into native species, archaeophytes (introduced before ad 1500) and neophytes (introduced later). Two sets of explanatory variables were obtained for each city: climatic data and all‐scale spatial variables generated by analysis of principal coordinates of neighbour matrices. For each group of species, the effect of habitat type, climate and spatial variables on variation in species composition was determined by variation partitioning. Responses of individual plant species to climatic variables were tested using a set of binomial regression models. Effects of climatic variables on the proportion of alien species were determined by linear regression. Results In all cities, 562 native plant species, 188 archaeophytes and 386 neophytes were recorded. Proportions of alien species varied among urban habitats. The proportion of native species decreased with increasing range and mean annual temperature, and increased with increasing precipitation. In contrast, proportions of archaeophytes and neophytes increased with mean annual temperature. However, spatial pattern explained a larger proportion of variation in species composition of the urban flora than climate. Archaeophytes were more uniformly distributed across the studied cities than the native species and neophytes. Urban habitats rich in native species also tended to be rich in archaeophytes and neophytes. Main conclusions Species richness and composition of central European urban floras are significantly affected by urban habitat types, climate and spatial pattern. Native species, archaeophytes and neophytes differ in their response to these factors.  相似文献   

11.
Although it is well established that butterfly richness is affected by climate and human factors (e.g. habitat disturbance and degradation) at different spatial scales, the drivers behind these changes vary greatly according to the geographical region and the ecology of the species concerned. It is essential that this variation be understood if trends in diversity are to be predicted with any degree of confidence under a scenario of global change. Here we examine patterns of butterfly species richness among groups differing in degree of habitat specialization, diet breadth and mobility in the north‐west Mediterranean Basin, a European hotspot for this taxon. We analyze a large number of butterfly communities and take into consideration the main potential drivers, that include climatic, geographic and resource variables, landscape structure and human environmental impact at different spatial scales. Our study shows that both climatic and anthropogenic factors play an important role in determining butterfly species richness in the north‐west Mediterranean Basin, but that their relative impact differs between specialist and generalist groups. At lower altitudes, water availability, a product of the interplay between temperature and rainfall, and negative effects of temperature appear as the most determinant factors. Maximum diversity was observed at mid‐altitudes, which reveals the importance from a conservation point of view of Mediterranean mountain ranges. The results suggest serious population declines in specialist species restricted to mountain areas as a result of climate warming in combination with habitat loss caused by the abandonment of grazing and mowing. They also suggest negative trends for generalist species due to an increase in aridity in combination with an increase in intensification of human land use in lowland areas. Such synergies are expected to lead to rapid declines in Mediterranean butterfly populations in the coming years, thereby posing a severe threat for the conservation of European biodiversity.  相似文献   

12.
AimAlthough patterns of biodiversity across the globe are well studied, there is still a controversial debate about the underlying mechanisms and their generality across biogeographic scales. In particular, it is unclear to what extent diversity patterns along environmental gradients are directly driven by abiotic factors, such as climate, or indirectly mediated through biotic factors, such as resource effects on consumers.LocationAndes, Southern Ecuador; Mt. Kilimanjaro, Tanzania.MethodsWe studied the diversity of fleshy‐fruited plants and avian frugivores at the taxonomic level, that is, species richness and abundance, as well as at the level of functional traits, that is, functional richness and functional dispersion. We compared two important biodiversity hotspots in mountain systems of the Neotropics and Afrotropics. We used field data of plant and bird communities, including trait measurements of 367 plant and bird species. Using structural equation modeling, we disentangled direct and indirect effects of climate and the diversity of plant communities on the diversity of bird communities.ResultsWe found significant bottom‐up effects of fruit diversity on frugivore diversity at the taxonomic level. In contrast, climate was more important for patterns of functional diversity, with plant communities being mostly related to precipitation, and bird communities being most strongly related to temperature.Main conclusionsOur results illustrate the general importance of bottom‐up mechanisms for the taxonomic diversity of consumers, suggesting the importance of active resource tracking. Our results also suggest that it might be difficult to identify signals of ecological fitting between functional plant and animal traits across biogeographic regions, since different species groups may respond to different climatic drivers. This decoupling between resource and consumer communities could increase under future climate change if plant and animal communities are consistently related to distinct climatic drivers.  相似文献   

13.
Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant–animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic.  相似文献   

14.
Aim Species can respond to global climate change by range shifts or by phenotypic adaptation. At the community level, range shifts lead to a turnover of species, i.e. community reassembly. In contrast, phenotypic adaptation allows species to persist in situ, conserving community composition. So far, community reassembly and adaptation have mostly been studied separately. In nature, however, both processes take place simultaneously. In migratory birds, climate change has been shown to result in both exchange of species and adaptation of migratory behaviour. The aim of our study is to predict the impact of global climate change on migratory bird communities and to assess the extent to which reassembly and adaptation may contribute to alterations. Location Europe. Methods We analysed the relationship between current climate and the proportion of migratory species across bird assemblages in Europe. The magnitude of community reassembly was measured using spatial variation in the proportion of potentially migratory species. Adaptation was inferred from spatial variation in the proportion of potentially migratory species that actually migrate at a specific site. These spatial relationships were used to make temporal predictions of changes in migratory species under global climate change. Results According to our models, increasing winter temperature is expected to lead to declines in the proportion of migratory species, whereas increasing spring temperature and decreasing spring precipitation may lead to increases. Changes in winter and spring temperature are expected to cause mainly adaptation in migratory activity, while changes in spring precipitation may result in both changes in the proportion of potentially migratory species and adaptation of migratory activity. Main conclusions Under current climate change forecasts, changes in the proportion of migratory species will be modest and the communities of migratory birds in Europe are projected to be altered through adaptation of migratory activity rather than through exchange of species.  相似文献   

15.
The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate‐induced adjustment of communities on Grinnellian (habitat‐related) and Eltonian (function‐related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving‐window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine‐scale and short‐term adjustment of community composition to temperature changes. Moreover, significant temperature variations seem to be responsible for both the Grinnellian and Eltonian aspects of functional homogenization.  相似文献   

16.
Aim  To distinguish the effects of physical geography and socioeconomic conditions on the extinction of butterflies in European states, and to compare patterns influencing extinctions with patterns influencing species richness.
Location  Europe.
Method  Per-state species richness and extinctions were taken from the Red Data Book of European Butterflies , and their relationships with physical geography and socioeconomic predictors were analysed using regression analysis. Two hypothesis were explored: (1) extinctions are related primarily to identical physical geography factors that influence species richness; and (2) extinctions are influenced primarily by human pressure on natural biotopes and follow correlates of modern land use.
Results  Extinctions and richness are not correlated. Richness increased towards low latitudes and with biotope and topographic heterogeneity, and decreased in states affected by Quaternary glaciation and on islands. The only socioeconomic correlate was human density, exhibiting a weak negative effect. Extinctions were negatively correlated with area and with biotope and topographic heterogeneity. They peaked in regions with mild climate in central latitudes. The strongest socioeconomic correlate was high density of railways, interpreted as a proxy of early industrialization. Further correlates were human density and urban employment.
Main conclusion  Topographic and biotope heterogeneity predicts both high species richness and low extinction rates. Losses of butterflies result from a complex interplay of geography and relatively recent economic history, as low topographic heterogeneity and flat relief favoured the early advent of industrialization and intensive land use.  相似文献   

17.
Tropical insects show temporal changes in their abundance and climate is one of the most influential factors. For tropical butterflies, few studies have quantified this relationship or analyzed changes in community composition and structure throughout time. Communities of butterflies attracted to rotting-carrion bait in one area of the Yasuni National Park, in Ecuadorian Amazonia were examined for these relationships. Butterfly communities in three different strata of the forest were sampled over 13 months using traps with rotten shrimp bait. In total, 9236 individuals of 208 species were collected between April 2002 and April 2003. The composition and structure of butterfly communities showed significant variation during the survey with a constant replacement of species throughout the year. Additionally, these communities had the highest species richness and abundance during the months with high temperatures and intermediate precipitation. Despite relatively low variation, temperature was the most significant climatic factor explaining differences in butterfly richness and abundance throughout the year. This significant response of butterfly communities to slight temperature variations reinforce the need of temporal studies to better predict how tropical butterfly populations will respond to predicted climate change.  相似文献   

18.
The recognition of multi‐causality and spatial non‐stationarity in the determinants of large‐scale biodiversity patterns requires to consider the role of multiple mechanisms, their interactions, and how these mechanisms vary in strength relative to each other across geographical space. Here, we challenge the view that historical climate stability primarily drives European patterns of groundwater crustacean diversity by testing also the role of spatial heterogeneity and productive energy. First, we predicted that the three mechanisms would be equally important at continental scale when analyzed separately, but that the importance of historical climate variability would weaken in joint analyses due to co‐variation with the two other mechanisms. Second, we predicted that the three mechanisms would exhibit predictable latitudinal changes in their relative strength. To test these predictions, we selected predictors representing each mechanism and analyzed separately and jointly their effects and interactions using global regression models. We further mapped the independent and overlapping effects of mechanisms across Europe using partial geographically weighted regressions. When analyzed separately, the three mechanisms explained the same amount of variation in species richness, but in the joint analysis, the influence of historical climate stability became hidden in the variation shared with the other mechanisms. Topographic heterogeneity interacted synergistically with actual evapotranspiration and habitat heterogeneity on species richness. Spatial non‐stationarity in the independent and overlapping effects of the three mechanisms was the most plausible explanation for the hump‐shaped latitudinal pattern of crustacean species richness. Productive energy and spatial heterogeneity were important predictors at mid and southern latitudes, whereas historical climate stability overlapped with the two other mechanisms in northern Europe and productive energy in southern Europe. Multi‐causality and spatial non‐stationarity provide a broader perspective of groundwater biodiversity determinants that revives the importance of spatial heterogeneity and the strong dependence of subterranean communities on food supply from the surface.  相似文献   

19.
The species richness and community composition of the diatom communities were studied in the Baltic Sea, Northern Europe, to enhance knowledge about the diversity of these organisms in a brackish water ecosystem. Many organisms in the Baltic Sea have been studied extensively, but studies investigating littoral diatoms are scarce. The goal of this study was to examine the importance of climatic, spatial and water physicochemical variables as drivers of epilithic diatoms in the Gulf of Finland and the Gulf of Bothnia. The variation in species richness was best explained by pH, total phosphorus and total nitrogen. Redundancy Analysis indicated that the most important factors correlating with species composition were air temperature, silicon, total phosphorus, water temperature, salinity and pH. Variation Partitioning showed that the species composition was mostly affected by climatic and spatial variables, whereas physicochemical variables had little impact. However, the strongest factor was the combined influence of climatic, spatial and physicochemical variables. The results suggest that diatom species richness in the northern Baltic Sea is primarily regulated by local factors, while climatic and spatial variables have little impact on richness. Species composition is mostly affected by climatic and spatial variables. We conclude that understanding the distribution patterns of Baltic Sea diatoms requires the inclusion of climatic, spatial and water chemistry variables.  相似文献   

20.
Question: What are the main broad‐scale spatial and temporal gradients in species composition of arable weed communities and what are their underlying environmental variables? Location: Czech Republic and Slovakia. Methods: A selection of 2653 geographically stratified relevés sampled between 1954–2003 was analysed with direct and indirect ordination, regression analysis and analysis of beta diversity. Results: Major changes in weed species composition were associated with a complex gradient of increasing altitude and precipitation and decreasing temperature and base status of the soils. The proportion of hemicryptophytes increased, therophytes and alien species decreased, species richness increased and beta diversity decreased with increasing altitude. The second most important gradient of weed species composition was associated with seasonal changes, resulting in striking differences between weed communities developed in spring and summer. In summer, weed communities tended to have more neophytes, higher species richness and higher beta diversity. The third gradient reflected long‐term changes in weed vegetation over past decades. The proportion of hemicryptophytes and neophytes increased, while therophytes and archaeophytes decreased, as did species richness over time. The fourth gradient was due to crop plants. Cultures whose management involves less disturbances, such as cereals, harboured less geophytes and neophytes, and had higher species richness but lower beta diversity than frequently disturbed cultures, such as root crops. Conclusions: Species composition of Central European weed vegetation is mainly influenced by broad‐scale climatic and edaphic factors, but its variations due to seasonal dynamics and long‐term changes in agricultural management are also striking. Crop plants and crop‐specific management affect it to a lesser, but still significant extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号