首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Embryogeny of gymnosperms: advances in synthetic seed technology of conifers   总被引:26,自引:0,他引:26  
Synthetic seed technology requires the inexpensive production of large numbers of high-quality somatic embryos. Proliferating embryogenic cultures from conifers consist of immature embryos, which undergo synchronous maturation in the presence of abscisic acid and elevated osmoticum. Improvements in conifer somatic embryo quality have been achieved by identifying the conditions in vitro that resemble the conditions during in ovulo development of zygotic embryos. One normal aspect of zygotic embryo development for conifers is maturation drying, which allows seeds to be stored and promotes normal germination. Conditions of culture are described that yield mature conifer somatic embryos that possess normal storage proteins and fatty acids and which survive either partial drying, or full drying to moisture contents similar to those achieved by mature dehydrated zygotic embryos. Large numbers of quiescent somatic embryos can be produced throughout the year and stored for germination in the spring, which simplifies production and provides plants of uniform size. This review focuses on recent advances in conifer somatic embryogenesis and synthetic seed technology, particularly in areas of embryo development, maturation drying, encapsulation and germination. Comparisons of conifer embryogeny are made with other gymnosperms and angiosperms.Abbreviations ABA abscisic acid - LEA late embryogenesis abundant - PEG polyethylene glycol - PGR plant growth regulator - RH relative humidity - TAG triacylglycerol  相似文献   

2.
A non-plasmolysing moisture stress effected by polyethyleneglycol (PEG) was beneficial when applied to maturing white spruce(Picea glauca) somatic embryos for the following reasons. Anosmotic treatment of 5.0–7.5% PEG stimulated a threefoldincrease in the maturation frequency. The osmotically treatedsomatic embryos displayed higher dry weights and lower moisturecontents than the controls, indicating a greater accumulationof storage reserves. Moisture contents of mature, osmotically-treated,hydrated somatic embryos were 40–45%, in contrast to 57%for the non-osmotically treated controls. Desiccation was achievedby placing the somatic embryos in a range of relative-humidityenvironments. No clear trend for the effect of PEG on survivalof desiccated somatic embryos was observed; mean survival valuesranged from 34 to 62% when somatic embryos from all osmotictreatments were desiccated for 14 d at 81% relative humidity.Following this desiccation treatment, somatic embryos from allosmotic concentrations had moisture contents of 26–31%,similar to the 32% recorded for unimbibed zygotic embryos. Afterimbibition, moisture contents for these zygotic and somaticembryos were in the order of 60%. Somatic embryos matured withPEG remained quiescent during desiccation due to their low initialmoisture contents, and gave rise to plantlets of normal appearance.Gradual desiccation of the somatic embryos directly followingmaturation with abscisic acid (ABA) was crucial to survivalduring desiccation. A plasmolysing water stress effected bysucrose at osmotic potentials similar to PEG was detrimentalto somatic embryo maturation, thereby emphasizing the importanceof the choice of osmoticum. Desiccation, maturation, osmotic potential, Picea glauca, polyethylene glycol, somatic embryo, water stress, white spruce  相似文献   

3.
The effect of abscisic acid (ABA), non-permeating osmoticumand desiccation treatment on storage protein synthesis duringmaturation of somatic embryos of Picea glauca (Moench) Voss.was examined. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE) and Western blot analysis demonstrated that someof the major crystalloid and matrix polypeptides were absentfrom somatic embryos maturing on medium containing ABA and lowosmoticum. However, treatment with polyethylene glycol-4000(PEG) in combination with ABA resulted in the synthesis of aspectrum of storage polypeptides resembling that of mature zygoticembryos. These storage proteins accumulated throughout an 8-weekculture period, resulting in a threefold higher protein contentthan somatic embryos maturing for the same time in the absenceof PEG. The structure and distribution of protein bodies incells of these osmotically treated somatic embryos was similarto that in cells of mature zygotic embryos. Treatment with 5·0-7·5%PEG prevented catabolism of the accumulated storage polypeptidesduring desiccation. The optimal culture conditions for somaticembryo maturation and storage protein deposition was 16 µMABA and 7·5% PEG for 8 weeks followed by desiccation.Analysis of mRNAs by in vitro translation and immunoprecipitationof translated products showed that the crystalloid protein mRNAprofiles of zygotic and those of somatic embryos maturing on16 µM ABA in the absence of PEG were similar. The differencesobserved in the pattern of accumulated polypeptides in thesesomatic embryos and those of mature zygotic embryos, therefore,indicates that storage-protein synthesis in response to osmoticumis in part regulated at the translational level. During regenerationof somatic embryos to plantlets the storage polypeptides wererapidly utilized in a manner similar to that in zygotic seedlings.Copyright1993, 1999 Academic Press Desiccation, osmotic stress, storage proteins, Picea, embryogenesis—somatic, mRNA (crystalloid protein)  相似文献   

4.
Knowledge of the relationship between indole-3-acetic acid (IAA) and abscisic acid (ABA) is relevant to control the development and the maturation of cork oak (Quercus suber L.) somatic embryos. The addition of 1 M ABA to the culture medium significantly promoted somatic embryo maturation and increased both fresh and dry matter without affecting the relative water content. This effect was parallel to the pattern of variation observed in the endogenous ABA level, which increased from the immature to the mature stage. Endogenous ABA content during the occurrence of secondary embryogenesis was similar to that of the immature stage, showing that embryos with lower ABA levels produced secondary embryos. In contrast, IAA showed the highest concentration during early embryo development and decreased afterwards. Only in somatic embryos subjected to 1-week desiccation followed by stratification at 4 °C for 2 weeks, was a moderate increment of endogenous IAA content observed. IAA and ABA showed opposite levels during the development and maturation of cork oak somatic embryos and characterised specific stages of the embryonic development.  相似文献   

5.
Inhibition of mango somatic embryo growth was inducedin vitro by treatments for 4 or more weeks with abscisic acid (0–100 M ABA) with and without high osmolarity provided by mannitol (0–10%). High osmolarity and ABA significantly affected somatic embryo length, precocious germination and the production of good quality secondary somatic embryos. High osmolarity also affected root elongation. Abscisic acid was more effective in suppressing growth and development of 0.5 cm-length somatic embryos than smaller somatic embryos. Development beyond the heart stage was significantly inhibited by both ABA and mannitol treatments. The recovery of good quality somatic embryos was enhanced by high levels of ABA (100 M) with and without mannitol (0–5%). Somatic embryos that had been pulsed with ABA were partially desiccated at different relative humidities. Weight loss was affected only by relative humidity; and ABA did not enhance desiccation tolerance.Abbreviations ABA Abscisic acid - 2,4-D 2,4-Dichlorophenoxyacetic acid - MM1 Mango maturation medium - RH Relative humidity  相似文献   

6.
Desiccation tolerance of celery (Apium graveolens L.) somatic embryos was increased by supplementation of embryo-production medium with 1 M abscisic acid (ABA) or 1 mM proline, with highest survival obtained with a combination of 1 M ABA and 1 mM proline. Addition of ABA and proline increased fatty acid accumulation by somatic embryos; the effect on fatty acid composition was inconsistent. Somatic embryos capable of germination differed from mature zygotic embryos by greater size, lower fatty acid level, and substantially lower proportion of oleic acid (18:1) as compared to linoleic acid (18:2).  相似文献   

7.
Summary The influence of the zygotic seed coat on precocious germination and desiccation tolerance of somatic embryos has been studied using alfalfa (Medicago sativa L.). When cultured in contact with somatic embryos, seed coats at certain developmental stages inhibited precocious germination and induced desiccation tolerance in the somatic embryos. Germination of somatic embryos was inhibited by seed coats at the age of 16–26 days after pollination (DAP) and desiccation tolerance was induced after 20–26 DAP. Both phenomena were related to the synthesis of abscisic acid in the seed coat. The absence of a quiescent phase and desiccation tolerance in alfalfa somatic embryos may be related to the lack of developmental control by the seed coat.Abbreviations ABA Abscisic acid - DAP Days after pollination  相似文献   

8.
Summary This report describes a low-cost method for generating large numbers of high quality mature white spruce (Picea glauca [Moench.] Voss) somatic embryos which survived desiccation and grew to plantlets more vigorously than excised zygotic embryos cultured in vitro. Somatic embryos from suspension culture were supported within a culture chamber on a flat absorbent pad above the surface of a liquid culture medium containing 20–50 M abscisic acid and 7.5 % polyethylene glycol. Throughout a 7 week culture period 3 L of fresh medium was pumped into one end of the chamber, while the spent medium exited by gravity from the opposite end. Over 6,300 cotyledonary stage white spruce somatic embryos were recovered after this time from a single culture chamber without manual manipulation. The somatic embryos were of excellent appearance with well developed cotyledons, and possessed high levels of storage lipids. They survived drying to about 8 % moisture content following treatment for 4 weeks at 63 % relative humidity, and following imbibition converted to normal plantlets at a frequency of 92 %, compared to 80 % for embryos grown in Petri dishes. Somatic embryos cultured within the bioreactor developed to plantlets that were 20 % longer than zygotic embryos excised from mature seed and grown in vitro, and were 38 % longer than somatic embryos cultured upon agar medium in Petri dishes.Plant Research Centre contribution No. 1523  相似文献   

9.
Peroxidase activity of desiccation-tolerant loblolly pine somatic embryos   总被引:1,自引:0,他引:1  
Summary Desiccation tolerance can be induced by culturing somatic embryos of loblolly pine (Pinus taeda L.) on medium supplemented with 50 μM abscisic acid (ABA) and/or 8.5% polyethylene glycol (PEG6000). Scanning electron microscopy of desiccated somatic embryos showed that the size and external morphology of the desiccation-tolerant somatic embryos recovered to the pre-desiccation state within 24–36 h, whereas the non-desiccation-tolerant somatic embryos did not recover and remained shriveled, after rehydration. Peroxidase activity of desiccated somatic embryos increased sharply after 1 d of desiccation treatment at 87% relative humidity (RH), and desiccation-tolerant somatic embryos had higher peroxidase activity compared to sensitive somatic embryos. Higher peroxidase activity of desiccation-tolerant somatic embryos may have allowed them to catalyze the reduction of H2O2 produced by drought stress, and protected them from oxidative damage.  相似文献   

10.
The limit of permeability of white spruce (Picea glauca [Moench.]Voss) somatic embryo cell walls to molecules was in the orderof 30 . Polyethylene glycols (PEGs) and dextrans of molecularweights greater than 1000 and 6000, respectively, produced anonpermeating (non-plasmolysing) water stress which improvedembryo development. Somatic embryos converted to plantlets atfrequencies of 76–84% following slow drying and storageat –20 C for 1 year, which was similar to the 77% recordedfor control somatic embryos slowly dried then germinated withoutfreezing or storage. Culture for 7–8 weeks with mediumcontaining abscisic acid, 3% sucrose, and 7.5% PEG 4000 yieldedsomatic embryos with five times the embryo storage lipid contentrecorded for zygotic embryos. During culture with PEG the moisturecontent of the somatic embryos decreased from 96% for immaturesuspension-cultured somatic embryos, to 47% for mature embryos.Somatic embryos cultured for 7–8 weeks survived rapiddrying to 5% moisture content, and converted to plantlets atfrequencies of 60–70%, but no somatic embryos survivedrapid drying when cultured for only 4 weeks; however, slow dryingdid induce desiccation tolerance in 3-week cultured somaticembryos. Abscisic acid was important to maintain embryos ina developmental state, but ABA alone did not induce desiccationtolerance. In order to induce desiccation tolerance a waterstress treatment was required. Tolerance of rapid drying coincidedwith moisture contents below 55%, which occurred after 5 weeksof culture in the presence of PEG 4000 and abscisic acid. Key words: Dextran, molecular weight, polyethylene glycol, triacylglycerol, water stress  相似文献   

11.
Embryogenic culture was initiated from mature zygotic embryos of Panax ginseng. Multiple somatic embryos formed and proliferated on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid (2.26 M) and kinetin (0.046 M). Mature as well as immature somatic embryos grew into plantlets lacking roots on the same media. Histomorphological analysis of somatic embryos treated with abscisic acid (ABA) and polyethylene glycol (PEG 4000) showed a slight improvement in the root meristem organization of torpedo-stage embryos (embryos were more compact and their cells exhibited a lower degree of vacuolation). Shoot regeneration of non-treated somatic embryos was 31% while that for somatic embryos treated with PEG 4000 and ABA was 70%. Moreover, 75% of plants regenerated from PEG- and ABA-treated embryos formed roots while plants from non-treated embryos did not form roots.Abbreviations ABA (±)-Abscisic acid - BAP N 6-Benzyladenine - 2,4-D 2,4-Dichlorophenoxyacetic acid - GA 3 Gibberellic acid - Kin Kinetin - MS Murashige and Skoog medium - PEG 4000 Polyethylene glycol 4000 - PGR Plant growth regulators Communicated by H. van Onckelen  相似文献   

12.
Anatomical study of zygotic and somatic embryos of Tilia cordata   总被引:1,自引:0,他引:1  
A comparative anatomical study was carried out on zygotic and somatic embryos of Tilia cordata Mill. to evaluate the effect of growth conditions on their development. Zygotic embryos (heart-shaped, torpedo, cotyledonary), collected during two autumn periods, were examined to investigate the effect of growing season on embryo development. In comparison, the influence of growth conditions on the development of somatic embryos in vitro was also studied. Treatment with abscisic acid (ABA) and polyethylene glycol-4000 induced the development of somatic cotyledonary embryos similar to zygotic embryos with respect to morphology and anatomy, as illustrated by the differentiation of the apical meristems and of the procambium. The pattern of accumulation of starch and protein was also similar in these embryos. Somatic cotyledonary embryos that developed spontaneously without ABA showed defective accumulation of storage material and a general failure to form the shoot apical meristem, leading to very low germination rates. Vacuolar phenolic deposits were observed along the procambium of both zygotic and somatic embryos regardless of the maturation stage. Tracheid formation was observed only in somatic embryos formed without ABA in the medium and in precociously germinated somatic embryos. Phenolic vacuolar inclusions were frequently observed in epidermal cells of these embryos. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
This work was carried out to determine what factors in the developing wheat (Triticum aestivum L.) grain are involved in regulating the metabolism of the triacylglycerol (TAG) storage reserves. When embryos are isolated from the grain and incubated in media for 4 d the TAG content is affected in three ways. In the basal medium (dilute buffer) the content falls; in 30 mM sucrose the content remains unchanged; in sucrose supplemented with an osmoticum (400 mM mannitol) or abscisic acid (1 M ABA) the TAG content increases. Effective osmotic potentials and ABA concentrations fit well with their respective values in planta. The fatty-acid composition of TAG accumulated in vitro is close to that in planta but in the absence of ABA or osmoticum there is a fall in the C18C16 ratio. Experiments with [14C] acetate show that the in-planta rate of incorporation into TAG can only occur in isolated embryos treated osmotically or with ABA, while there seems to be no effect of these two factors on TAG breakdown. An osmotic shock (dilute buffer) for only 2 h causes a rapid fall in TAG synthesis which continues for ca. 24 h after which it recovers. Abscisic acid protects against osmotic shock. It is concluded that TAG synthesis in developing wheat embryos is regulated by the osmotic potential and-or ABA, and that the embryos are very sensitive to short-term perturbations of these two factors.Abbreviations ABA abscisic acid - dpa days post anthesis - TAG triacylglycerol We are grateful to the European Economic Community for a Fellowship to R.R.S. which provided financial support for this work.  相似文献   

14.
Somatic embryos of Vitis vinifera (cv. Grenache noir) develop normally up to the torpedo stage, but they germinate precociously and form viable plantlets with very low frequency. Because a peak in abscisic acid (ABA) in mid‐embryogenesis could be one factor preventing precocious germination during normal seed development, we followed the development of ABA content concurrent with that of the somatic embryos. Additionally, we measured changes in indoleacetic acid (IAA) levels. We also compared the levels of both hormones during precocious germination of somatic embryos and during normal germination of their zygotic counterparts. Somatic embryos were able to accumulate ABA and IAA throughout their development but no peak in ABA concentration was detected during embryogenesis. This suggests that the switch from mid‐ to late‐embryogenesis is not triggered. Furthermore, during precocious germination, i.e. from the torpedo stage onwards, the concentrations of ABA and IAA in somatic embryos were much lower than during normal germination of zygotic embryos. Thus, it is likely that when precocious germination occurs, grape somatic embryos do not accumulate ABA and/or IAA in sufficient concentrations to support normal plantlet development. Therefore, for grape somatic embryos we propose that prevention of precocious germination, i.e. triggering late‐embryogenesis, is attainable by an ABA treatment followed by slow desiccation, as already shown for conifer somatic embryos. Our results also suggest that the role of ABA and IAA for improving normal germination after imposed quiescence should be investigated.  相似文献   

15.
E. Maquoi  D. E. Hanke  R. Deltour 《Protoplasma》1993,174(3-4):147-157
Summary A comparison of embryos, cultured for increasing periods of time with and without abscisic acid (ABA), was undertaken to investigate, at the ultrastructural level, the influence of this growth regulator on the maturation of rapeseed (Brassica napus) somatic embryos. In the absence of ABA, the embryos germinated precociously while lipid bodies (LB), which were not numerous, soon degraded, as revealed by a depletion process associated with the appearance of morphologically mature glyoxysomes and an increase in the number of mitochondria. Moreover, a lack of protein bodies indicated that storage protein accumulation was not initiated under these conditions. On the contrary, the addition of ABA (10 M) induced marked modification of embryo metabolism. Indeed, ABA completely prevented precocious embryo germination and inhibited lipid reserve catabolism. Moreover, the formation of small vacuoles and proliferation of rough endoplasmic reticulum in their vicinity suggested the onset of storage protein accumulation. After 15 days in the presence of ABA, the embryos contained abundant lipid and protein bodies. Nevertheless, these somatic embryos were not exactly the same as their mature zygotic counterparts since differences were found in chloroplasts, amyloplasts, and nuclear structures. These observations suggest that additional factors might be required to obtain fully mature somatic embryos.Abbreviations ABA abscisic acid - ABM ABA medium - BM basal medium - LB lipid bodies - MS Murashige and Skoog (1962) - PB protein bodies - RER rough endoplasmic reticulum  相似文献   

16.
Frequency of somatic embryogenesis from callus cultures derived from immature cotyledon explants of Simarouba glauca Linn. was highest on solid MS medium supplemented with 11.1 M benzyladenine and 13.42 M -naphthaleneacetic acid. On transfer of the somatic embryos into maturation medium containing half-strength MS medium supplemented with 1.89 M abscisic acid (ABA) and 2% (w/v)sucrose, 20–25 % of embryos germinated within 20 days of culture with distinct cotyledon, hypocotyl and radicle.  相似文献   

17.
Summary Taxusbrevifolia is the source of paclitaxel (Taxol®), an anticancer drug. A method for regeneration ofTaxus brevifolia from immature zygotic embryos via somatic embryogenesis is described. Embryogenic callus tissues were obtained by culturing immature zygotic embryos on Lloyd and McCown medium (MCM) supplemented with 160 M 2,4-dichlorophenoxyacetic acid (2,4-D) + 5 M benzylaminopurine (BA) + 5 M naphthaleneacetic acid (NAA) for 4 weeks. Putative embryoids were obtained following transfer of cultures to MCM medium supplemented with 4 M BA + 5 M kinetin + 1 M NAA for 6 to 8 weeks. Conversion of embryos was obtained on MCM medium supplemented with 40 M abscisic acid (ABA) + 1% activated charcoal. Development of bipolar structures with recognizable shoot and root apices was observed in somatic embryos. Five percent of somatic embryos were regenerated into plantlets on half-strength growth regulator-free MCM medium.  相似文献   

18.
Summary Cotyledonary somatic embryos ofLarix × leptoeuropaea that developed after various maturation times on media containing abscisic acid showed different frequencies of conversion into plants. Drying of these somatic embryos under high relative humidity (RH) before germination improved plantlet recovery and eliminated differences in the performance of somatic embryos matured for different times. However, dehydration of somatic embryos under 98% RH to a water content below that of zygotic embryos excised from mature seeds (0.97 and 1.36 g H2O/g dry weight, respectively) showed a strong positive correlation between longer maturation time and desiccation tolerance. Drying somatic embryos at 4° C under 59% RH for 1 wk resulted in desiccation to a water content of 0.30 g H2O/g dry weight, which was the closest to the hydration state of zygotic embryos in dried, stored seeds (0.20 g H2O/g dry weight). Under this condition, only somatic embryos matured for 5 wk germinated and produced plantlets at a relatively high frequency (73 and 41%, respectively).  相似文献   

19.
Control of hyperhydricity of mango somatic embryos   总被引:3,自引:0,他引:3  
Hyperhydricity of immature somatic embryos has been a limiting factor for the development of highly embryogenic suspension cultures of many important mango cultivars. Reversion of hyperhydricity was achieved in two ways: 1) heart-stage somatic embryos (2–3 mm length) were partially dehydrated under controlled conditions at high relative humidity (RH) for 24–48 h and 2) the gelling agent (Gel-Gro) concentration of the plant growth medium was increased from 2.0 to 6.0 g l-1. Partially dehydrated immature somatic embryos were normal in appearance. Somatic embryos that were partially dehydrated germinated precociously when cultured on maturation medium. Although abscisic acid (ABA) did not reverse hyperhydricity of primary somatic embryos, ABA did stimulate the reversal of this abnormal pattern of development among secondary embryos. ABA (500 M) inhibited precocious germination and permitted somatic embryo maturation. Partially dehydrated, immature somatic embryos (4–7 mm long) remained viable for up to 32 days in the absence of maturation medium under high RH.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - ABA abscisic acid - BA 6-benzyladenine - RH relative humidity  相似文献   

20.
J. G. Carman 《Planta》1988,175(3):417-424
The effects of O2, growth-regulators and desiccation on callus growth and somatic embryo (embryoid) development were investigated in cultures of immature embryos of two lines of Triticum aestivum L. Callus and embryoid formation were induced on media that contained N6-furfurylamin-opurine (kinetin) and either 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-o-anisic acid, either with or without abscisic acid (ABA). Cultures containing differentiated embryoids were then exposed to high concentrations of both ABA and indole-3-acetic acid, after which samples were desiccated to approx. 10% tissue moisture. Incubating cultures in 3.2 mmol·l-1 O2 (approx. 9%, low-O2) increased embryoid formation sixfold in one wheat line and nearly threefold in another. In the former line low-O2 caused the formation of mostly embryogenic callus. Low-O2 also decreased precocious germination of immature embryos, decreased callus growth, and improved development and viability of the resultant embryoids. Including 1.9 mol·l-1 ABA in the callus-induction medium reduced germination of immature embryos and reduced the incidence of embryoids with visible abnormalities. Despite the improved morphology, significantly fewer of the embryoids produced on ABA-containing medium germinated. Desiccation significantly enhanced germination of these embryoids as well as those produced on ABA-free medium.Abbreviations ABA abscisic acid - DPA days post-anthesis - dicamba 3,6-dichloro-o-anisic acid - 2,4-D 2,4-dichlorophen-oxyacetic acid - FW fresh weight - IAA indole-3-acetic acid - Kin kinetin (N6-furfurylaminopurine) - MS Murashige and Skoog (1962) medium Contribution of the Utah Agricultural Experiment Station, Utah State University, Logan, UT, Journal Paper No. 3565  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号