首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Sex hormone-binding globulin (SHBG) is expressed in hypothalamic magnocellular neurons. High co-localization rates of SHBG with oxytocin have been observed in the hypothalamus, indicating that SHBG plays a role in pregnancy, parturition and lactation. Further studies have shown that hypothalamic SHBG expression is malleable to changing steroid conditions. In this study, we have examined SHBG levels in the supraoptic and paraventricular hypothalamic nuclei and in the posterior pituitary lobe of late pregnant, parturient and early lactating rats by IN SITU hybridization, immunocytochemistry, and ELISA. Immunocytochemical and biochemical analysis showed that the SHBG levels increased during late pregnancy in hypothalamic nuclei. During parturition, SHBG levels fell in the magnocellular nuclei but increased in the posterior pituitary lobe. SHBG levels increase again during lactation. At day six of lactation, there was no significant difference in SHBG levels compared to normal cycling female rats, which served as control in this study. IN SITU hybridization showed increased SHBG mRNA signal during late pregnancy. The highest SHBG expression was observed during parturition. Our data indicate that hypothalamic SHBG expression changes during pregnancy, parturition and lactation, parallel to ovarian steroid and co-localized OT levels. This may in part be linked to known steroid actions on synthesis and secretion of magnocellular hypothalamic peptide hormones, important for the control of parturition and lactation.  相似文献   

2.
Corticosteroid-binding globulin, a specific steroid carrier in serum with high binding affinity for glucocorticoids, is expressed in various tissues. In the present study, we describe the immunocytochemical distribution of this protein in neurons and nerve fibers in the human hypothalamus. CBG immunoreactive perikarya and fibers were observed in the paraventricular, supraoptic, and sexual dimorphic nuclei in the perifornical region, as well as in the lateral hypothalamic and medial preoptic areas, the region of the diagonal band, suprachiasmatic and ventromedial nuclei, bed nucleus of the stria terminalis and some epithelial cells from the choroid plexus and ependymal cells. Stained fibers occurred in the median eminence and infundibulum. Double immunostaining revealed a partial co-localization of corticosteroid-binding globulin with oxytocin and, to a lesser extent, with vasopressin in the paraventricular and the supraoptic nuclei. Double immunofluorescence staining showed coexistence of these substances in axonal varicosities in the median eminence. We conclude that neurons of the human hypothalamus are capable of expressing corticosteroid-binding globulin, in part co-localized with the classical neurohypophyseal hormones. The distribution of CBG immunoreactive neurons, which is widespread but limited to specific nuclei, indicates that CBG has many physiological functions that may include neuroendocrine regulation and stress response.  相似文献   

3.
The effect of posterior lobe extracts on prolactin secretion in vitro was compared with that of median eminence, hypothalamic (with and without median eminence) and cortex extracts. The posterior lobe extract clearly inhibited adenohypophysial prolactin secretion, showing a similar effect to that of the hypothalamic extracts. The median eminence extract showed inconstant inhibitory effects, while the cerebral cortex extracts showed no effect. The removal of the median eminence did not modify the hypothalamic inhibitory effect. Although the median eminence has always been considered to be the final common pathway for the control of adenohypophysial secretion, these results suggest that the posterior lobe may also play a physiological role in this control.  相似文献   

4.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

5.
Summary To elucidate the role of hypothalamic neuropeptides in regulation of reproductive phenomena of seasonally breeding feral mammals, we used Japanese long-fingered bats, Miniopterus schreibersii fuliginosus, for immunocytochemical study of distribution of the following neuropeptides in the hypothalamus: arginin vasopressin, oxytocin, luteinizing hormone-releasing hormone, somatostatin, corticotropin-releasing factor, and growth hormone-releasing factor. The size, shape and location of supraoptic, paraventricular, suprachiasmatic, and arcuate nuclei of the bat were determined. Arginin vasopressin-and oxytocin-immunoreactive magnocellular neurons were found in the supraoptic and paraventricular nuclei, where they exhibited separate distribution into two distinct groups. Parvocellular arginin vasopressin neurons occurred only in the suprachiasmatic nucleus. The hibernating bats exhibited slightly increased numbers of vasopressin and oxytocin neurons in the supraoptic and paraventricular nuclei. The pregnant bat displayed further increased numbers of vasopressin and oxytocin neurons in both nuclei. Somatostatin-immunoreactive neurons in the paraventricular nucleus were also immunopositive to anti-oxytocin serum, while those in the ventromedial and arcuate nuclei reacted solely to anti-somatostatin serum. They projected to the anterior median eminence and infundibular stalk. Luteinizing hormone-releasing hormone-immunoreactive perikarya were scattered throughout the basal hypothalamus, being particularly abundant in the arcuate nucleus. They were larger in size in hibernating bats than those in normal (non-pregnant) and pregnant females. They projected fibers mainly to the internal layer of the median eminence and infundibular stalk. A few luteinizing hormone-releasing hormone-reactive fibers were also observed in the organum vasculosum laminae terminalis, lateral habenular nuclei, pineal stalk, retroflexus fasciculus, and olfactory tubercle. Corticotropin releasing factor-immunoreactive perikarya were distributed in the paraventricular nucleus and medial preoptic area and projected into the external layer of the anterior median eminence, while growth hormone-releasing factor-immunoreactive perikarya occurred only in the arcuate nucleus and projected into the posterior part of the median eminence.  相似文献   

6.
We used in situ hybridization and immunocytochemistry to investigate a possible coexistence of vasopressin and oxytocin in hypothalamic neurons of parturient rats. We found that a fraction of magnocellular neurons in the paraventricular and supraoptic nuclei contained immunostaining for both peptides as well as oxytocin and vasopressin mRNA hybridization. Colocalization of immunoreactive vasopressin and oxytocin could be observed in some of the Herring bodies in the median eminence and the posterior lobe. No coexistence of vasopressin and oxytocin was found in pregnant or in lactating animals, indicating that the observed coexistence is transitory, perhaps mediated through changing hormonal conditions peri partum.  相似文献   

7.
Summary A light microscopic immunocytochemical study of the brain of frogs with hypothalamic lesions was performed in order to obtain evidence concerning the origin of somatostatin fibers in the median eminence and neural lobe of the hypophysis. The results indicate that the somatostatin fibers of the neural lobe originate from somatostatin perikarya located in the prechiasmatic part of the hypothalamus and possibly also in the telencephalon. The somatostatin neurons of the pars ventralis tuberis cinerei do not send axons to the neural lobe. The frog median eminence contains axon terminals of somatostatin neurons located in the pars ventralis of the tuber cinereum. Many other somatostatin fibers of the frog median eminence originate from somatostatin neurons located outside the tuber cinereum. Most of these neurons probably lie in the preoptic hypothalamic region.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

8.
The analgesic response elicited by central administration of arginine vasopressin (AVP) appears to be dependent upon the integrity of the hypothalamic paraventricular nucleus (PVN), since lesions placed in the PVN eliminate AVP analgesia. A projection to the zona externa of the median eminence constitutes one of the VP-containing efferents of the PVN. Neonatal treatment with monosodium glutamate (MSG) destroys perikarya of the arcuate nucleus and median eminence. The present study examined whether AVP analgesia was affected in the MSG-treated rat and whether these alterations were accompanied by specific changes in VP immunoreactivity in the zona externa of the median eminence. Female rats, neonatally treated with either MSG or a saline control, were tested as adults on the tail-flick test following intracerebroventricular injections of 0, 75, 150 and 500 ng doses of AVP. After testing, selected animals were prepared for AVP and oxytocin immunocytochemistry of the median eminence. Significant potentiations in the magnitude of AVP analgesia were observed in MSG-treated rats. AVP and oxytocin immunoreactivity in the zona interna and oxytocin immunoreactivity in the zona externa of the median eminence were similar in MSG-treated and control rats. In contrast, AVP immunoreactivity in the zona externa of the median eminence was markedly reduced in the MSG-treated rat. These data suggest that VP analgesia may normally be inhibited by those medial-basal hypothalamic neurons affected by neonatal MSG treatment.  相似文献   

9.
The pars distalis of the avian adenohypophysis consists of well-defined cephalic and caudal lobes which are distinct in their cellular constituents. Immunocytochemical investigations on the pituitary hormones of the pars distalis of the Japanese quail reveal five types of secretory cells, adenocorticotropin (ACTH) cells, prolactin (PRL) cells, thyroid-stimulating hormone (TSH) cells, growth hormone GH (STH) cells, and FSH/LH (gonadotropic) cells. The ACTH cells, TSH cells, and PRL cells are restricted to the cephalic lobe, and GH (STH) cells are confined to the caudal lobe, while FSH/LH cells are distributed throughout the cephalic and caudal lobes. The median eminence of birds has distinct anterior and posterior divisions, each with different neuronal components. The avian hypophysial portal vessels also consists of two groups, anterior and posterior. The peculiar arrangement and distribution of the avian hypophysial portal vessels are possibly related to the distribution of neuropeptides in the two divisions of the median eminence and to the cytological and functional differentiation of two lobes of the pars distalis. The localization of perikarya and fibers containing luteinizing hormone releasing hormone (LHRH), somatostatin, vasotocin, mesotocin, corticotropin-releasing factor (CRF), vasoactive intestinal polypeptide (VIP), glucagon, metenkephalin, and substance P in the hypothalamus and median eminence of the Japanese quail has been investigated by means of immunohistochemistry using antisera against the respective neuropeptides. LHRH-, somatostatin-, VIP-, met-enkephalin-, and substance P-immunoreactive fibers are localized in the external layer of the anterior and posterior divisions of the median eminence, while CRF- and vasotocin-reactive fibers are demonstrated only in the external layer of the anterior division of the median eminence. The metenkephalin fibers are thicker in the anterior median eminence but the substance P fibers are more abundant in the posterior division. Mesotocin fibers occur only in the internal layer of the median eminence and neural lobe.  相似文献   

10.
We observed coexistence of corticosteroid-binding globulin (CBG) with vasopressin (VP) and oxytocin (OT) in magnocellular neurons in rat hypothalamus by combined immunoperoxidase staining and immunofluorescence. A portion of the supraoptic and of the paraventricular neurons showed double immunostaining of CBG with either VP or with OT. CBG staining was intensified by pretreating animals with colchicine to block axonal transport. CBG was also observed in widespread axonal projections throughout the lateral hypothalamus, the median eminence and the posterior pituitary lobe. Single ependymal cells and some of the endocrine cells in the anterior lobe contained specific CBG immunoreactivity. IN SITU hybridization of semithin sections with a synthetic oligonucleotide probe to CBG mRNA provided staining of magnocellular hypothalamic neurons, but not ependymal cells or anterior lobe cells. Western blots of CBG extracted by affinity chromatography from hypothalamus homogenates showed a band at approximately 50 kDa. Our observations indicate the intrinsic expression of CBG in peptidergic hypothalamus neurons in rat. The multiple locations of CBG-expressing neurons indicate multiple functional properties, probably exceeding the role of a mere steroid transporter. CBG is likely to be subject to axonal transport and secretion in a neuropeptide-like fashion, perhaps involved in neuroendocrine regulation, which may include stress responses.  相似文献   

11.
The influence of adrenalectomy and administration of hypertonic saline on the amount of vasopressin, oxytocin, and neurophysin contained in the median eminence and the neural lobe of rats was studied by means of the following methods: (i) morphometric and microphotometric analyses of aldehyde fuchsin-stained histological sections of the neurohypophysis; (ii) immunohistochemical demonstration of vasopressin, oxytocin, and neurophysin in the neurohypophysis, and (iii) radioimmunological measurement of vasopressin and oxytocin in extracts of the median eminence and the neural lobe. Adrenalectomy increases the amount of vasopressin and neurophysin in the external layer of the median eminence but does not change the content of oxytocin. It has no influence on the amount of vasopressin, oxytocin, and neurophysin demonstrable in the inner layer of the median eminence and in the neural lobe two weeks after the operation. Hypertonic saline markedly diminishes the vasopressin, oxytocin, and neurophysin content of the inner layer of the median eminence and the neural lobe but reduces only slightly, if at all, the amount of vasopressin and neurophysin in the outer layer of the median eminence. The findings support the concept that osmotic stress reduces only the vasopressin and oxytocin content of the hypothalamus-neural lobe system and has no or only little influence on the vasopressin content of the outer layer of the median eminence.  相似文献   

12.
We observed immunostaining for vitamin D binding protein (DBP) in rat hypothalamus. Part of the supraoptic and of the paraventricular neurons showed DBP immunoreactivity, in part colocalized with Arg-vasopressin. DBP was also observed in widespread axonal projections throughout the lateral hypothalamus, the median eminence and the posterior pituitary lobe. A portion of ependymal cells, the choroids plexus epithelium and some of the endocrine cells in the anterior pituitary lobe contained DBP immunoreactivity. In situ hybridization of semithin sections with a synthetic oligonucleotide probe to DBP mRNA resulted in staining of magnocellular hypothalamic neurons, but not of ependymal cells or anterior lobe cells. Our observations indicate an intrinsic expression of DBP in the rat hypothalamus. DBP may be synthesized and transported along with the classical neurohypophyseal hormones. The multiple locations of DBP-expressing neurons indicate multiple functional properties: DBP may be released from in the posterior lobe, it may act as a hypophyseotropic factor and as a central neuroactive substance.  相似文献   

13.
Neurophysin, vasopressin and oxytocin were localized in different portions of the supraopticohypophysial tract (SHT) using the unlabeled antibody enzyme technique at the ultrastructural level. In vasopressin-positive supraoptic perikarya, vasopressin and neurophysin were present in all neurosecretory granules. Within the zona interna of the median eminence, vasopressin and neurophysin were present in two populations of axons, one with granules of 1300-1500 A and one with granules of 900-1300 A. Following exposure of thin sections of median eminence to antiserum to neurophysin, reaction products were present in granules and in the extragranular cytoplasm in the axons with larger granules; in all other cases reaction product was confined to the granules. Vasopressin-positive fibers were also presented in large numbers of the zona externa of the median eminence and many terminated on the pituitary primary portal plexus. A few oxytocin fibers were present on the portal capillaries in the infundibular stalk. In the posterior pituitary all axon profiles were neurophysin positive. Neurophysin was present as both a granular and cytoplasmic pool. Vasopressin-containing axons account for 90% of the neuronal elements in the posterior pituitary and oxytocin for the remaining 10%. Findings on the subcellular distribution of these peptides are related to current theories on transport and release of neurohormones.  相似文献   

14.
Summary Immunoreactive galanin-like material was recently shown to co-exist with vasopressin in parvocellular and magnocellular perikarya of the paraventricular nucleus in the anterior hypothalamus of the rat (Melander et al. 1986). Since this distribution pattern differed from our observation of oxytocin-associated galanin-like immunoreactivity (LI) in the neurohypophysis, we compared in series of 0.5-m thick sections the localisation of galanin-LI with the localisation of oxytocin and vasopressin/dynorphin in the hypothalamus, the median eminence and the neurohypophysis. In the oxytocin system, galanin-LI was intense in oxytocin varicosities of the neurohypophysis. Oxytocin perikarya of the hypothalamic supraoptic and paraventricular nuclei exhibited galanin-LI only after intraventricular injection of colchicine and when sections were treated with trypsin prior to application of the antibody. In the vasopressin/dynorphin system galanin-LI was intense in hypothalamic perikarya after colchicine injection and in neurohypophysial varicosities after treatment of the sections with trypsin. In these neurones, galanin-LI was absent or weak in all elements when treatments with colchicine or trypsin were omitted. Galanin-LI in the neurohypophysis was not co-localised with the numerous fine endings showing GABA-LI. These observations indicate that galanin-like material coexists with vasopressin and oxytocin in the respective magnocellular neurones, although not always in an immunoreactive form.  相似文献   

15.
A rare polymorphism in the human sex hormone binding globulin (SHBG) gene was detected using a human SHBG cDNA probe. It is the first DNA sequence variation reported in this gene.  相似文献   

16.
Using radioimmunoassay (RIA), the content of gastrin-cholecystokinin family peptide immunoreactivity (G-CCK-IR), in the posterointermediate lobe (PIL) of the rat pituitary, has been determined in several experimental conditions. G-CCK-IR levels are significantly higher in males than in females. Salt loading induces a significant decrease of G-CCK-IR in animals of either sex. In males, G-CCK-IR levels are lower than controls 21 days after either castration or daily subcutaneous oestradiol injections. Using immunocytochemistry, G-CCK-IR disappears from the external median eminence 21 days after adrenalectomy. Our results show that, in addition to sex difference, factors affecting the vasopressin and/or oxytocin levels in the posterior pituitary and external median eminence also affect G-CCK-IR in the same regions. Cholecystokinin may therefore be of importance in functions related to these hormones.  相似文献   

17.
Specific, homologous porcine neurophysin I and II radioimmunoassays were established together with specific oxytocin and vasopressin radioimmunoassays. The levels of each of these proteins and peptides were measured in acid extracts of individual paraventricular nuclei, supraoptic nuclei, neurohypophyseal stalks and posterior pituitary lobes of 12 pigs in order to quantitate the neurophysin-hormone relationships in the porcine neurohypophyseal system. Neurophysin III was found to be immunologically identical to neurophysin I. Neurophysin measurements by radioimmunoassay were quantitatively validated by scanning densitometry of polyacrylamide gels stained with 0.5% amido schwarz. In the hypothalamic nuclei vasopressin was in 3–4 M excess of oxytocin but in the neurohypophyseal stalk and posterior pituitary lobe the hormones were equimolar suggesting that the rate of formation of vasopressin differs from that of oxytocin. Neurophysin I immunoreactivity was present in a 3:1 molar ratio with neurophysin II throughout the porcine neurohypophyseal system. In posterior pituitary lobes total neurophysins were equimolar to total hormone concentrations. The specific activity (pmol/mg extracted protein) of oxytocin increased 1800 times, vasopressin 560 times and neurophysins about 360 times from the paraventricular nucleus to the posterior pituitary lobe. In the hypothalamic nuclei relationships between immunoreactive neurophysin I and vasopressin, and between neurophysin II and oxytocin were highly significant. In the posterior pituitary lobe each immunoreactive neurophysin level correlated with both hormone levels. Quantification of densitometric scans of stained polyacrylamide gels from neurophypophyseal extracts and immunoreactivity patterns of neurophysins in eluates of sliced, duplicate gels indicated that neurophysin III decreased distally within the neurohypophyseal tract while neurophysin I increased. The results demonstrated that vasopressin was associated with porcine neurophysin I. However, oxytocin may be associated with both immunoreactive neurophysin I and neurophysin II in the porcine neurohypophyseal system if a 1:1 molar ratio of neurophysin to hormone is to be maintained. Neurophysin III contributed to the stoichiometry of this relationship.  相似文献   

18.
The distribution of luteinizing hormone-releasing hormone (LHRH)-immunostained perikarya and processes was examined in the forebrains of six sexually mature female pigs by use of indirect biotin-avidin horseradish peroxidase immunocytochemistry. Two primary antisera (Drs. Y.F. Chen and V.D. Ramirez CRR11B73 and Miles-Yeda UZ-4) yielded positive staining. Adjacent sections treated either primary antiserum preabsorbed with LHRH or with normal rabbit serum substituted for primary antiserum lacked positive staining. The greatest proportion of LHRH-immunostained perikarya were found in the medial preoptic area adjacent to the organum vasculosum of the lamina terminalis. The LHRH-immunostained perikarya were also scattered rostrally in the diagonal band of Broca, and within the lateral hypothalamic area, paraventricular nucleus, periventricular zone, suprachiasmatic nucleus, and medial basal hypothalamus. LHRH-immunostained processes, which extended from the medial preoptic area, coursed either along the ventral surface to the median eminence or medially and ventrally along the third ventricular wall ventrally to the median eminence and caudally to the level of the mammillary bodies. Extrahypothalamic processes were located adjacent to the lateral ventricular floor and the third ventricle from the lateral septal area (stria terminalis) to the level of the habenular nucleus. LHRH-immunostained neurons were unipolar, bipolar, and multipolar. Close associations between individual LHRH-immunostained neurons were observed.  相似文献   

19.
Thirty-one women with severe premenstrual syndrome had low sex hormone binding globulin (SHBG) binding capacities 30.2 +/- 9.4 nmol DHT bound/l. The SHBG binding capacities rose when they were treated with three different doses of progesterone. On 400 mg (17 women) SHBG level was 45.11 +/- 11.80. On 800 mg (8 women) SHBG binding capacity rose to 64.75 +/- 14.30 and on the six women who took 1200 mg progesterone daily SHBG binding capacity was 78.5 +/- 23.10. These results are discussed.  相似文献   

20.
The effects of neurotensin on the activity of hypothalamic tuberoinfundibular and periventricular-hypophysial dopaminergic (DA) neurons, and on the secretion of pituitary hormones that are tonically regulated by these neurons (i.e. prolactin and alpha-melanocyte-stimulating hormone [alpha MSH], respectively) were examined in estrogen-primed ovariectomized rats. The activity of tuberoinfundibular and periventricular-hypophysial DA neurons was estimated by measuring concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the terminals of these neurons in the median eminence and intermediate lobe of the posterior pituitary, respectively. Intracerebroventricular administration of neurotensin caused a dose- and time-related increase in DOPAC concentrations in both the median eminence and intermediate lobe, and a concurrent decrease in plasma levels of prolactin and alpha MSH. These results suggest that neurotensin-induced inhibition of secretion of prolactin and alpha MSH from the pituitary may be due to the stimulatory action of this neuropeptide on the release of dopamine from tuberoinfundibular and periventricular-hypophysial neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号