首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] −1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100°C. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100°Cfor 15 min and that of lotus seeds was 13.5% following the treatment at 100°C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100°C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100°C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100°C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100°C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 −12 h of the treatment at 100°C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5–10 min of the treatment at 100°C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100°C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100°C. For maize seeds: (1) activities of SOD and DHAR of embryos and endosperms and of GR of embryos increased during the early phase of the treatment at 100°C and then decreased; and (2) activities of APX and CAT of embryos and endosperms and of GR of endosperms rapidly decreased with increasing treatment time at 100°C. With decrease in seed germination, activities of SOD, APX, CAT, GR and DHAR of axes and cotyledons of lotus seeds decreased slowly, and those of embryos and endosperms of maize seeds decreased rapidly.  相似文献   

2.
Two cultivars of peanut (Arachis hypogaea L.) which were designated as resistant (Florispan) and sensitive (Gazipasa) according to their growth retardation under drought stress conditions were compared for their oxidative damage and antioxidant responses. Sixteen days-old peanut seedlings were subjected to PEG-6000 solutions of two different osmotic potentials; −0.4 and −0.8 MPa, and various growth parameters, photosystem II activity, changes in malondialdehyde (MDA), hydrogen peroxide (H2O2) and proline levels, activities of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POX) and gluthatione reductase (GR) enzymes were determined. Both cultivars exhibited water deficit at −0.8 MPa osmotic potential of PEG-6000 and H2O2 levels significantly increased during exposure to −0.4 MPa osmotic potential. However, H2O2 levels were under control in both cultivars at exposure to −0.8 MPa osmotic potential. Significant proline accumulation was observed in the tissues of cv. Florispan at −0.8 MPa osmotic potential, whereas proline accumulation did not appear to be an essential part of the protection mechanism against drought in cv. Gazipasa. No significant variation in chlorophyll fluorescence values were detected in neither of the cultivars. Enzyme activity measurements revealed that Gazipasa copes well with lesser magnitudes of drought stress by increasing the activity of mainly APX, and during harsh stress conditions, only APX maintains its activity in the tissues. In cultivar Florispan, GR activity appears to take role in lesser magnitudes of drought stress, whereas CAT and APX activities appear to be very crucial antioxidative defenses during intense stress conditions. The results indicate that, the level of proline and activities of the enzymes CAT and APX are important mechanisms for the maintenance of drought tolerance in peanut plants.  相似文献   

3.
Effect of high temperature stress on polyamine catabolism and antioxidant enzyme activity in relation to glutathione, ascorbate and proline accumulation was studied in five wheat (Triticum aestivum L.) genotypes (differently susceptible to temperature stress). High temperature significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione S-transferase (GST) in shoots of all genotypes. Higher activities of GPX in C 306, C 273 and APX in PBW 550, PBW 343 and PBW 534 demonstrate their important role in scavenging H2O2. Conversely, high temperature stress led to a significant decline in SOD, CAT, APX and GPX activities of roots with a subsequent increase in diamine oxidase (DAO) and polyamine oxidase (PAO) activities especially in PBW 550 and PBW 343. The concentration of ascorbic acid declined with the imposition of heat stress, however, polyamines responded to high temperature stress by increasing spermidine and spermine levels and decreasing putrescine levels. After exposure to high temperature, proline accumulation was significantly decreased in roots and increased in shoots though maximum concentration was achieved in C 306 genotype. Apparently, the wheat seedlings respond to high temperature mediated increase in reactive oxygen species (ROS) production by altering antioxidative defense mechanism and polyamine catabolism though differentially in five wheat genotypes. Among five genotypes studied, C 306 and C 273 seem to be better protected against temperature stress. The results suggested that shoots were more resistant against the destructive effects of ROS as is indicated by low levels of thiobarbituric acid reactive substances under high temperature stress.  相似文献   

4.
Summary An efficient in vitro plant regeneration system from cotyledons was established in tetraploid Isatis indigotica Fort. Factors influencing shoot regeneration from cotyledons, including culture medium type, combinations of plant growth regulators, and sucrose concentrations in the medium, as well as illumination were investigated. Murashige and Skoog's (MS) medium was found to be best for promoting shoot regeneration, followed by Gamborg's B5 and White's medium. The highest shoot regeneration frequency was achieved from cotyledons cultured on MS medium supplemented with 2.0 mgl−1 (8.9 μM) 6-benzyladenine and 1.0 mgl−1 (5.4 μM) α-naphthaleneacetic acid (NAA), with 97.9% regeneration, associated with a high number of multiple shoots developed per explant (8.6 shoots per explant). A sucrose concentration of 3% present in the medium and light conditions were beneficial for shoot regeneration. The shoots developed were rooted in a half-strength MS medium supplemented with 1.0 mgl−1 (5.4 μM) NAA and successfully transplanted in soil in pots with over 85% survival. The establishment of an efficient plant regeneration procedure from cotyledons provides a basis for the rapid in vitro multiplication of tetraploid Isatis indigotica Fort., one of the most extensively used medicinal plants in China currently under great shortage.  相似文献   

5.
A protocol for adventitious shoot formation in Symphyotrichum novi-belgii was developed after investigating the effects of cultivar and hormone combinations. A Murashige and Skoog medium with 1.0 mg l−1 6-benzyladenine induced adventitious shoot formation in 15 out of 19 cultivars. Addition of 0.1 mg l−1 indole-3-acetic acid or naphthaleneacetic acid increased the total number of shoots per explant, but not the number of shoots longer than 1 cm. Addition of dichlorophenoxyacetic acid (2,4-D) promoted callus formation, but inhibited shoot elongation. A transformation system for the two cultivars Victoria Fanny and Victoria Jane was developed by co-cultivation of leaf explants with Agrobacterium tumefaciens. Three bacterial strains (LBA 4404, A281 and C58) all carrying the binary vector, p35S-GUS-INT, and harbouring the uidA gene coding for β-glucuronidase (GUS) were used. Regeneration of transgenic plants after co-cultivation with A281 was independent of cultivar, and all explants produced callus followed by indirect shoot formation. In ‘Victoria Fanny’ shoots were formed faster and without a callus phase after co-cultivation with LBA 4404 or C58. The highest number of potentially transformed shoots was regenerated after co-cultivation of ‘Victoria Fanny’ leaf explants with LBA 4404. Integration of the transgenes in the plant genome was confirmed using PCR and Southern blot hybridisation. To verify that the transgenes could be transferred to offspring, crosses were conducted between three transgenic lines of ‘Victoria Fanny’ and two wild type pollen donors. It was demonstrated that viable seeds were produced and that the uidA gene was inherited.  相似文献   

6.
Effects of the antioxidant system and chlorophyll fluorescence on drought tolerance of four common bean (Phaseolus vulgaris L.) cultivars were studied. The cultivars were positioned in the order of a decrease in their drought tolerance: Yakutiye, Pinto Villa, Ozayse, and Zulbiye on the basis of changes in the water potential, stomatal conductance, photosynthetic pigment content, and lipid peroxidation. Under drought conditions, the level of H2O2 was not changed in cv. Pinto Villa but decreased in other cultivars. Antioxidant enzymes (superothide dismutase (SOD), guaiacol peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)) were generally activated in all cultivars. Interestingly, CAT, APX, and GR activities were not changed in cv. Pinto Villa, APX activity decreased in cv. Yakutiye, and CAT activity was not changed in cv. Zulbiye. The increases in SOD and GPX activities in cv. Ozayse were higher than in other cultivars. Drought stress reduced the effective quantum yield of PS2 (ΦPS2) and the photochemical quenching (qp), while it increased nonphotochemical quenching (NPQ) in all cultivars. The reduction or increase was more pronounced in cv. Zulbiye. There were generally significant correlations between qp, NPQ, and ROS scavenging by SOD and APX. Also, there were significant correlations between SOD and qp in tolerant cultivars and APX and qp in sensitive ones. The results indicate that activation of SOD and APX was closely related to the efficiency of PS2 in common bean cultivars. This interaction was essential for protection of photosystems and plant survival under drought.  相似文献   

7.
A high frequency shoot regeneration system for ornamental kale [Brassica oleracea L. var. acephala (D.C.) Alef.] was firstly established from seedling cotyledon and hypocotyl explants. The ability of cotyledon and hypocotyl to produce adventitious shoots varied depending upon genotype, seedling age and culture medium. The maximum shoot regeneration frequency was obtained when the explants from cv. Nagoya 4-d-old seedlings were cultured on Murashige and Skoog (MS) medium supplemented with 3 mg dm−3 6-benzylaminopurine (BA) and 0.1 mg dm−3 naphthaleneacetic acid (NAA). The frequency of shoot regeneration was 65.0 % for cotyledons, 76.1 % for hypocotyls; and the number of shoots per explant was 4.3 for cotyledons, 8.2 for hypocotyls. Hypocotyl explants were found to be more responsive for regeneration when compared with cotyledons. Among the 4 cultivars tested, Nagoya showed the best shoot regeneration response. The addition of 3.0 mg dm−3 AgNO3 was beneficial to shoot regeneration. Roots were formed on the base of the shoots when cultured on half-strength MS medium.  相似文献   

8.
The objective of the present study was to determine the influence of potassium deprivation on the halophyte species Hordeum maritimum grown in hydroponics for 2 weeks. Treatments were with potassium (+K) or without potassium (−K). Growth, water status, mineral nutrition, parameters of oxidative stress [malondialdehyde (MDA), carbonyl groups (C=O), and hydrogen peroxide concentration (H2O2) contents], antioxidant enzyme activities [superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate peroxidase (MDHAR, EC 1.6.5.4), dehydroascorbate peroxidase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2)], and antioxidant molecules [ascorbate (ASC), and glutathione (GSH)] were determined. Results showed that the growth of vegetative organs decreased owing to potassium deficiency with roots (−36%) more affected than shoots (−12%). Water status was only diminished in roots (reduction of 24%). Potassium deprivation decreased potassium concentration in both organs, this decrease was more pronounced in roots (−81%) than in shoots (−55%). In contrast to carbonyl groups, MDA content increased owing to potassium deprivation. Except for CAT activity that remained unaffected; SOD, GPX, APX, GR, MDHAR, and DHAR activities were significantly increased. H2O2 concentration was negatively correlated with the activities of enzymes and the accumulation of non-enzymatic antioxidants implicated in its detoxification. In conclusion, a cooperative process between the antioxidant systems is important for the tolerance of H. maritimum to potassium deficiency.  相似文献   

9.
The potential involvement of activated oxygen species by submergence stress was studied in two Malaysian rice cultivars, MR219-4 and MR219-9, and cultivar FR13A that is known to be tolerant to submergence. Seedlings of these three rice cultivars were subjected to different submergence periods (4, 8, and 12 days). Under 8 days of complete submergence, FR13A cultivar showed higher lipid peroxidation in terms of malondialdehyde level and activities of antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) when compared to the MR219-4 and MR219-9 cultivars. MR219-9 showed higher SOD, APX, and GR activities after 12 days of submergence. The levels of SOD activity indicated that detoxification of O2·− to H2O2 was maintained at a stable level throughout the submergence stress until up to 8 days and increased rapidly at 12 days of submergence. The results indicated that tolerance to submergence in rice is associated until 8 days submergence for MR219-4 and FR13A cultivars. These findings suggested that tolerance to submergence stress in rice might be proven by increased the capacity of antioxidative system. In addition, CAT activity has much higher affinity for scavenges H2O2 than APX. Therefore, ascorbate glutathione cycle might be more efficient to scavenge H2O2.  相似文献   

10.
Arabidopsis thaliana . Three-week-old plants were exposed to a high temperature (30 C), an enhanced light intensity (200 μE/m2/sec), water deficiency (water deprivation for 2 days), a chilling temperature (5 C), or ultraviolet-B (UV-B) radiation (0.25 or 0.094 W/m2) for 1 week (except for water deficiency). The high temperature and enhanced light treatments increased only dehydroascorbate reductase (DHAR) activity. Water deficiency enhanced the activities of DHAR and guaiacol peroxidase (PER). Chilling temperature increased the activities of ascorbate peroxidase (APX) and glutathione reductase (GR), whereas it decreased catalase (CAT) activity. UV-B at an intensity of 0.25 W/m2 elevated the activities of APX, monodehydroascorbate reductase (MDHAR), GR, PER and superoxide dismutase (SOD). It was suggested that the amounts of phenylpropanoid compounds increased during treatments of plants with enhanced light intensity, chilling temperature, and UV-B. These results suggest that some differences exist among the oxidative stress conditions caused by the different treatments, although all of these treatments seem to be related to active oxygen production. We propose that in A. thaliana, environmental stresses may be classified into those which induce DHAR activity and those which induce APX activity. Received 11 January 1999/ Accepted in revised form 22 April 1999  相似文献   

11.
Pretreatment of radish cotyledons with polyamines (PAs; especially 1 mM spermidine) significantly improved their tolerance to subsequent 50 μM paraquat (PQ)-induced oxidative damage. Symptoms in the cotyledons, e.g., large accumulations of H2O2, and losses of fresh weight, chlorophyll, and proteins, were remarkably alleviated. Likewise, analysis of several enzymes belonging to the Superoxide dismutase (SOD)/ascorbate-glutathione cycle showed that pretreatment with PAs prevented typical PQ-induced declines in the total activities of SOD, ascorbate peroxidase (APX), and glutathione reductase (GR). Dehydroascorbate reductase (DHAR) activity, which normally decreases sharply under prolonged PQ exposure, was also highly maintained by PA treatment. In a native gel assay, two SOD isozymes (FeSOD and Cu/ZnSODI), two APX isozymes (APX1 and APX2), and two GSSG-specific isozymes (GR1 and GR2) proved to be more responsible for PQ tolerance, as manifested by the strong increases in their activities by spermidine (Spd) pretreatment. In addition, experiments with protein synthesis inhibitors (actinomycin D and cycloheximide) indicated that Spd could stimulatede novo synthesis of SOD and APX at the translational level. We can conclude that PAs may function as antioxidant protectors by invoking an efficient SOD/ascorbate-glutathione cycle in radish cotyledons exposed to PQ.  相似文献   

12.
The present study investigated the effects of aluminum on lipid peroxidation, accumulation of reactive oxygen species and antioxidative defense systems in root tips of wheat (Triticum aestivum L.) seedlings. Exposure to 30 μM Al increased contents of malondialdehyde, H2O2, suproxide radical and Evans blue uptake in both genotypes, with increases being greater in Al-sensitive genotype Yangmai-5 than in Al-tolerant genotype Jian-864. In addition, Al treatment increased the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and glutathione peroxidase (GPX), as well as the contents of ascorbate (AsA) and glutathione (GSH) in both genotypes. The increased activities SOD and POD were greater in Yangmai-5 than in Jian-864, whereas the opposite was true for the activities of CAT, APX, MDHAR, GR and GPX and the contents of AsA and GSH. Consequently, the antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity and ferric reducing/antioxidant power (FRAP) was greater in Jian-864 than in Yangmai-5.  相似文献   

13.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.  相似文献   

14.
The responses of antioxidative system and photosystem II photochemistry of rice (Oryza sativa L.) to paraquat induced oxidative stress were investigated in a chilling-tolerant cultivar Xiangnuo no. 1, and a chilling-susceptible cultivar, IR-50. Electrolyte leakage and malondialdehyde (MDA) content of Xiangnuo no. 1 were little affected by paraquat, but they increased in IR-50. After paraquat treatment, superoxide dismutase (SOD) activity remained high in Xiangnuo no. 1, while it declined in IR-50. Activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) declined with oxidative stress in both cultivars, but Xiangnuo no. 1 had higher GR activity than IR-50. Under paraquat induced oxidative stress, ascorbic acid (AsA) and reduced glutathione (GSH) concentrations remained high in Xiangnuo no. 1, but decreased in IR-50. The results indicated that higher activities of SOD and GR and higher contents of AsA and GSH in Xiangnuo no. 1 under paraquat induced oxidative stress were associated with its tolerance to paraquat, while paraquat induced damage to IR-50 was related to decreased activities of SOD, APX and GR and contents of AsA and GSH. F v/F m, Φ PSII, and qP remained high in Xiangnuo no. 1, while they decreased greatly in IR-50 under paraquat induced oxidative stress.  相似文献   

15.
Thermotolerance and related antioxidant enzyme activities induced by both heat acclimation and exogenous salicylic acid (SA) application were studied in grapevine (Vitis vinifera L. cv. Jingxiu). Heat acclimation and exogenous SA application induced comparable changes in thermotolerance, ascorbic acid (AsA), glutathione (GSH), and hydrogen peroxide (H2O2) concentrations, and in activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), ascorbic peroxidase (APX) and catalase (CAT) in grape leaves. Within 1 h at 38 °C, free SA concentration in leaves rose from 3.1 μg g−1 FW to 19.1 μg g−1 FW, then sharply declined. SA application and heat acclimation induced thermotolerance were related to changes of antioxidant enzyme activities and antioxidant concentration, indicating a role for endogenous SA in heat acclimation in grape leaves.  相似文献   

16.
Breeding linseed (Linum usitatissimum L.) using haploid techniques allows breeders to develop new cultivars in a shorter time period. Many research groups successfully created new linseed genotypes through anther culture; however ovary culture has been the subject of only a few earlier studies. In the present study, the effect of genotype and growth regulators combination on callus induction and shoots regeneration in ovary culture of nine commercially important linseed cultivars was investigated. Ovaries were cultured on modified MS medium supplemented with three different combinations of plant growth regulators. Variable callogenic responses were expressed by all of the genotypes tested on different induction media. The results suggested that specific combination of growth regulators for callus induction must be designed for each genotype. Shoot regeneration from ovary derived callus is a critical phase of the whole gynogenetic process. Differences in adventitious shoot formation frequency among genotypes were demonstrated and four responsive genotypes have been selected. Ovary derived callus from cultivar ‘Mikael’ manifested the highest adventitious shoot formation frequency with a high number of shoots per explant. The optimum ratio of growth regulators for shoot regeneration was shown to depend on the genotype. Cultivars ‘Linola’, ‘Mikael’ and ‘Szaphir’ showed the highest shoot regeneration frequency when callus had originated on induction medium supplemented with 2 mg L−1 BAP and 2 mg L−1 NAA, while combination of 1 mg L−1 BAP and 2 mg L−1 IAA promoted shoot formation in ovary-derived callus of ‘Barbara’. The highest rate of shoots per explant has been obtained in second subculture.  相似文献   

17.
18.
Summary This study provides first-hand information on the salinity and copper-induced oxidative damage and its protection in Anabaena doliolum by the antioxidant defence system. Oxidative damage measured in terms of lipid peroxidation, electrolyte leakage and H2O2 production was induced by different concentrations of NaCl and Cu2+. A greater electrolyte leakage by NaCl than Cu2+ supported the hypothesis of salinity being more injurious than copper. To explore the survival strategies of A. doliolum under NaCl and Cu stress, enzymatic antioxidant activities e.g. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) and nonenzymatic antioxidant contents such as glutathione reduced (GSH), ascorbate, α-tocopherol, and carotenoid were measured. A general induction in SOD and APX activities as well as ascorbate and α-tocopherol contents was found under NaCl and Cu2+ stress. In contrast to this, an appreciable decline in GR activity, GSH pool and carotenoid content under Cu2+ and an increase under NaCl stress were observed. CAT activity was completely inhibited at high doses of NaCl but stimulated following Cu2+ treatment. The above results suggest the involvement of APX and CAT in the scavenging of H2O2 under Cu2+ stress. In contrast to this, only APX was involved in H2O2 scavenging under salt stress. Our postulate of Cu2+-mediated antagonism of salt stress can be explained by a conceivable reversion of Na+-induced disturbance of cellular homeostasis by redox active Cu2+.  相似文献   

19.
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.  相似文献   

20.
Defence reactions occurring in resistant (cv. Gankezaomi) and susceptible (cv. Ganmibao) muskmelon leaves were investigated after inoculating with Colletotrichum lagenarium. Lesion restriction in resistant cultivars was associated with the accumulation of hydrogen peroxide (H2O2). The activity of antioxidants catalase (CAT) and peroxidase (POD) significantly increased in both cultivars after inoculation, while levels of both CAT and POD activity were significantly higher in the resistant cultivar. Ascorbate peroxidase (APX) increased in both cultivars after inoculation, and level of APX activity was significantly higher in the resistant cultivar. Glutathione reductase (GR) activity significantly increased in both cultivars following inoculation, but was higher in the resistant cultivar, resulting in higher levels of ascorbic acid (AsA) and reduced glutathione (GSH). Phenylalanine ammonia lyase (PAL) significantly increased in inoculated leaves of both cultivars, resulting in higher levels of total phenolic compounds and flavonoids. The pathogenesis‐related proteins chitinase (CHT) and β‐1, 3‐glucanase (GLU) significantly increased following inoculation with higher activity in the resistant cultivar. These findings show that resistance of muskmelon plants against C. lagenarium is associated with the rapid accumulation of H2O2, resulting in altered cellular redox status, accumulation of pathogenesis‐related proteins, activation of phenylpropanoid pathway to accumulation of phenolic compounds and flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号