首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Occasional spontaneous “action potentiais” are found in mature hyphae of the fungus Neurospora crassa. They can arise either from low-level sinusoidal oscillations of the membrane potential or from a linear slow depolarization which accelerates into a rapid upstroke at a voltage 5–20 mV depolarized from the normal resting potential (near − 180 mV). The “action potentiais” are long-lasting, 1–2 min and at the peak reach a membrane potential near −40 mV. A 2− to 8−fold increase of membrane conductance accompanies the main depolarization, but a slight decrease of membrane conductance occurs during the slow depolarization. Two plausible mechanisms for the phenomenon are (a) periodic increases of membrane permeability to inorganic ions, particularly H+ or Cl- and (b) periodic decreases in activity of the major electrogenic pump (H+) of the Neurospora membrane, coupled with a nonlinear (inverse sigmoid) current-voltage relationship.Identification of action potential-like disturbances in fungi means that such behavior has now been found in all major biologic taxa which have been probed with suitable electrodes. As yet there is no obvious function for the events in fungi.  相似文献   

2.
O Tour  H Parnas    I Parnas 《Biophysical journal》1998,74(4):1767-1778
We have studied the voltage sensitivity of glutamate receptors in outside-out patches taken from crayfish muscles. We found that single-channel conductance, measured directly at the single-channel level, increases as depolarization rises. At holding potentials from -90 mV to approximately 20 mV, the conductance is 109 pS. At holding potentials positive to 20 mV, the conductance is 213 pS. This increase in single-channel conductance was also observed in cell-attached patches. In addition, desensitization, rise time, and the dose-response curve were all affected by depolarization. To further clarify these multifaceted effects, we evaluated the kinetic properties of single-channel activity recorded from cell-attached patches in hyperpolarization (membrane potential around -75 mV) and depolarization (membrane potential approximately 105 mV). We found that the glutamate dissociation rate constant (k_) was affected most significantly by membrane potential; it declined 6.5-fold under depolarization. The rate constant of channel closing (k(c)) was also significantly affected; it declined 1.8-fold. The rate constant of channel opening (k(o)) declined only 1.2-fold. The possible physiological significance of the depolarization-mediated changes in the above rate constants is discussed.  相似文献   

3.
We studied the effects of disopyramide phosphate on explanted neonatal rat ventricle cells exhibiting depressed fast responses or naturally occurring slow response action potentials together with automatic activity. Disopyramide suppressed the spontaneous activity at a concentration of 2.5 micrograms/mL with a half-maximal value of 10 micrograms/mL. Before spontaneous activity was lost, there was an increase in beating rate possibly related to membrane depolarization. In depressed fast and slow response action potentials there was an increase in action potential duration (APD) which was consistently found both at the level of the plateau and at 90% repolarization. Comparison of the APD increase observed after disopyramide treatment and that after exposure to 20 mM tetraethylammonium suggested a block of a potassium conductance as a possible cause underlying the change in APD. The Vmax values of the depressed fast response decreased at constant membrane potential and this was attributed to the local anesthetic effect of the drug. In addition, we report two novel findings: (i) a decrease of Vmax of the slow response action potentials which may be secondary to membrane depolarization, and (ii) an increase in the duration of slow action potentials, possibly caused by inhibition of a potassium conductance.  相似文献   

4.
The electrophysiological properties of a hormone-dependent, differentiated thyroid epithelial cell strain were studied using intracellular microelectrodes. The average membrane potential of solitary, isolated cells was –78.4 ± 1.3 mV. The membrane potential depolarized 55 mV per tenfold increase in extracellular potassium concentation. Weak electrical coupling was recorded between contiguous cells. Like tyroid cells in vivo, these cells did not generate action potentials. In some cells a spontaneous, slow transition in the membrane potential from –80mV to –30 mV was accompanied by an increase in input resistance. Membrane potential transitions could be induced by perfusing cells with isotonic Hanks solutions saturated with CO2 (pH = 5.5) or by perfusing cells with hypotonic Hanks solutions (190–290 mOsm/kg). Membrane potential transitions were due to a decreased potassium permeability. Noradrenaline elicted both a fast depolarization and a slow depolarization. The fast depolarization was due to an increase in conductance of Na+ channels and of Cl channels. Intracellular injection of Ca++ elicited the fast depolarization. Intracellular injection of EGTA or cobalt abolished the fast depolarization. Replacemnt of extracellular Ca++ by Mg++ did not affect the fast depolarization. Thus, the fast depolarization was due to accumulation of intracellular Ca++. The fast depolarization was abolished by the alpha adrenergic blocker phentolamine (10–6 M), and was not abolished by the beta adrenergic blocker propranolol (10–5 M).  相似文献   

5.
Postsynaptic potentials (PSPs) recorded from leech Retzius cells in response to stimulation of interganglionic connective could not be reversed by soma depolarization or abolished by 40 mM Mg ion, nor could input resistance changes be detected during them. Alteration of external Cl and K over a tenfold range provided no clear evidence that the PSPs involved a conductance change to either ion. The method of extrapolation yielded an apparent PSP equilibrium potential of about -20 mV. The steep portion of the relationship between Retzius cell action potential amplitude and membrane potential extrapolated to an apparent reversal potential of -13 mV. It is likely that the connective-to-Retzius cell PSPs were principally electrical events. Their apparent reversal potentials could have been in the range associated with chemical synapses because they traversed an electrical synapse with a variable coupling resistance, or because the polarizing currents, passing "backwards" across electrical synapses, changed the amplitude of the presynaptic action potentials.  相似文献   

6.
Double whole-cell patch-clamp methods were used to characterize Junctional membrane conductances in epidermal cell pairs isolated from the prepupal integument of the flour beetle, Tenebrio molitor. The mean initial Junctional conductance in 267 cell pairs was 9.5 ± 1.0 nS (range 0–95 nS). Well-coupled cell pairs uncoupled spontaneously with a half-time of 7.6 min. Adding 5 mM ATP to the pipette solution stabilized coupling with less than a 50% drop occurring after 30 min. Nonjunctional membrane potential was the major determinant of Junctional conductance with transjunctional potential playing a minor role. Junctional conductance approached 0 pA at nonjunctional membrane potentials greater than 0 mV and increased with hyperpolarization. The voltage at half-maximal conductance was –26 mV. The time course of the reversible changes in Junctional conductance were slow (30 sec) with time-dependent decay occurring faster and recovery occurring slower with increasing depolarization. Single gap Junctional channel activity was recorded in uncoupling cell pairs and in poorly coupled ATP-stabilized cell pairs. One main single channel conductance was observed in each cell pair. The mean single channel conductances from all cell pairs in this study ranged from 197–347 pS (mean 248 pS). Single channel conductance was linear over the ±60 mV transjunctional voltage range tested. A broad range of subconductance states of the main state representing 5% of the total open time of measurable main state events was observed. Single channel activity was strongly dependent on the nonjunctional membrane potential, increasing with hyperpolarization.We gratefully acknowledge the helpful advice of Dr. Stephen Sims. This work was supported by NSERC of Canada grant No. A6797 to S.C. D.C. was supported by an NSERC scholarship for part of this work.  相似文献   

7.
Two types of the late Na channels, burst and background, were studied in Purkinje and ventricular cells. In the whole-cell configuration, steady-state Na currents were recorded at potentials (-70 to -80 mV) close to the normal cell resting potential. The question of the contribution of late Na channels to this background Na conductance was investigated. During depolarization, burst Na channels were active for periods (up to approximately 5 s), which exceeded the action potential duration. However, they eventually closed without reopening, indicating the presence of slow and complete inactivation. When, at the moment of burst channel opening, the potential was switched to -80 mV, the channel closed quickly without reopening. We conclude that the burst Na channels cannot contribute significantly to the background Na conductance. Background Na channels undergo incomplete inactivation. After a step depolarization, their activity decreased in time, approaching a steady-state level. Background Na channel openings could be recorded at constant potentials in the range from -120 to 0 mV. After step depolarizations to potentials near -70 mV and more negative, a significant fraction of Na current was carried by the background Na channels. Analysis of the background channel behavior revealed that their gating properties are qualitatively different from those of the early Na channels. We suggest that background Na channels represent a special type of Na channel that can play an important role in the initiation of cardiac action potential and in the TTX-sensitive background Na conductance.  相似文献   

8.
Two types of slow excitatory postsynaptic potentials (EPSPs) with different properties were found in neurons of the rabbit superior cervical sympathetic ganglion. In our group of neurons slow EPSPs increased during artificial hyperpolarization and decreased during depolarization of the membrane. The input resistance of the cells fell or remained unchanged during the development of slow EPSPs. In the second group of cells slow EPSPs increased during depolarization and decreased during hyperpolarization. The reversal potential of these responses, determined by extrapolation, was –78.9±3.6 mV. Depolarization responses to activation of muscarinic cholinergic receptors by acetylcholine or carbachol developed in 53% of neurons with an increase in input resistance and had a reversal potential of –83.2±6.7 mV. It is suggested that in cells of the first group the ionic mechanism of the slow EPSPs is similar to that of the fast EPSPs, whereas in cells of the second group its main component is a decrease in the potassium conductance of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 371–379, July–August, 1981.  相似文献   

9.
A prolonged hyperpolarizing afterpotential (amplitude 5–20 mV, half decay time about 400 msec at 25°C) follows the action potential in myotubes and myosacs cultured from rat skeletal muscle. This slow hyperpolarizing afterpotential (hap) is mediated by an increase in membrane K conductance, because its reversal potential follows the Nernst potential for K and is not affected by other ions. The conductance increase measured during the hap (up to four times the resting input conductance) correctly predicts the time course of the slow hap. The slow hap is Ca dependent. Its amplitude decreases when bath [Ca] is lowered, and both amplitude and duration increase when bath [Ca] is raised. The slow hap is blocked by intracellular injection of the calcium chelator, EGTA. It is inhibited by solutions containing 2–4 mM manganese or 1–5 mM barium, but is not blocked by 5–20 mM tetraethylammonium. Myotubes bathed in zero [Na], high [Ca] solutions show calcium action potentials, which are inhibited by 2–10 mM manganese, nickel or cobalt. Myotubes bathed in isotonic Ca salts (or in 2 mM Ca plus 5 mM caffeine) show long-lasting (up to 10 sec) spontaneous hyperpolarizations accompanied by prolonged contractions. These hyperpolarizations are associated with a large increase in input conductance, and they reverse in sign near the K equilibrium potential. They appear to reflect activation of the Ca-sensitive K conductance by Ca released from intracellular stores. The observation that spontaneous hyperpolarizations usually occur with no prior depolarization argues that at least a portion of the slow, Ca-sensitive K conductance system can be activated by internal Ca alone, with no requirement for plasma membrane depolarization. Cultured myotubes also have a faster K conductance system, which is inhibited by 5–20 mM tetraethylammonium or 1–5 mM barium, and is not dependent on Ca for its activation.  相似文献   

10.
Unfertilized Lytechinus variegatus eggs in sea water in their normal physiological state have membrane potentials that approximate ?70 to ?80 mV. This conclusion is based on microelectrode measurements and on computation from the Na+ and K+ fluxes. The ?8 to ?15 mV values for the membrane potential previously reported and which are generally measured are the consequence of depolarization by impalement. The activation potential in inseminated eggs with an initial membrane potential more negative than ?60 mV is a compound event involving sperm-induced as well as voltage dependent conductance changes. The sperm-induced mechanism is a two-phase conductance increase which involves both Na+ and Ca2+ during the first phase, and Na+ alone during the second phase. In addition, the sperm-induced depolarization at the beginning of the first phase activates a voltage dependent Ca2+-conductance mechanism resulting in generation of an action potential.  相似文献   

11.
Postsynaptic potentials (PSPs) recorded from leech Retzius cells in response to stimulation of interganglionic connective could not be reversed by soma depolarization or abolished by 40 mM Mg ion, nor could input resistance changes be detected during them. Alteration of external Cl and K over a tenfold range provided no clear evidence that the PSPs involved a conductance change to either ion. The method of extrapolation yielded an apparent PSP equilibrium potential of about ?20 mV. The steep portion of the relationship between Retzius cell action potential amplitude and membrane potential extrapolated to an apparent reversal potential of ?13 mV. It is likely that the connective-to-Retzius cell PSPs were principally electrical events. Their apparent reversal potentials could have been in the range associated with chemical synapses because they traversed an electrical synapse with a variable coupling resistance, or because the polarizing currents, passing “backwards” across electrical synapses, changed the amplitude of the presynaptic action potentials.  相似文献   

12.
A model of the electrophysiological properties of rodent nucleus reticularis thalami (NRT) neurons of the dorsal lateral thalamus was developed using Hodgkin-Huxley style equations. The model incorporated voltage-dependent rate constants and kinetics obtained from recent voltage-clamp experiments in vitro. The intrinsic electroresponsivity of the model cell was found to be similar to several empirical observations. Three distinct modes of oscillatory activity were identified: 1) a pattern of slow rhythmic burst firing (0.5-7 Hz) usually associated with membrane potentials negative to approximately -70 mV which resulted from the interplay of ITs and IK(Ca); 2) at membrane potentials from approximately -69 to -62 mV, rhythmic burst firing in the spindle frequency range (7-12 Hz) developed and was immediately followed by a tonic tail of single spike firing after several bursts. The initial bursting rhythm resulted from the interaction of ITs and IK(Ca), with a slow after-depolarization due to ICAN which mediated the later tonic firing; 3) with further depolarization of the membrane potential positive to approximately -61 mV, sustained tonic firing appeared in the 10-200-Hz frequency range depending on the amplitude of the injected current. The frequency of this firing was also dependent on the maximum conductance of the leak current, IK(leak), and an interaction between the fast currents involved in generating action potentials, INa(fast) and IK(DR), and the persistent Na+ current, INa(P). Transitions between different firing modes were identified and studied parametrically.  相似文献   

13.
Transmembrane potentials recorded from the rabbit heart in vitro were displayed as voltage against time (V, t display), and dV/dt against voltage (V, V or phase-plane display). Acetylcholine was applied to the recording site by means of a hydraulic system. Results showed that (a) differences in time course of action potential upstroke can be explained in terms of the relative magnitude of fast and slow phases of depolarization; (b) acetylcholine is capable of depressing the slow phase of depolarization as well as the plateau of the action potential; and (c) action potentials from nodal (SA and AV) cells seem to lack the initial fast phase. These results were construed to support a two-component hypothesis for cardiac electrogenesis. The hypothesis states that cardiac action potentials are composed of two distinct and physiologically separable "components" which result from discrete mechanisms. An initial fast component is a sodium spike similar to that of squid nerve. The slow component, which accounts for both a slow depolarization during phase 0 and the plateau, probably is dependent on the properties of a slow inward current having a positive equilibrium potential, coupled to a decrease in the resting potassium conductance. According to the hypothesis, SA and AV nodal action potentials are due entirely or almost entirely to the slow component and can therefore be expected to exhibit unique electrophysiological and pharmacological properties.  相似文献   

14.
A single channel current was studied in the membrane of the immature oocyte of the european frog (Rana esculenta) by using the "patch clamp" technique in the "cell attached" configuration. Single channel activity appeared as short outward currents when membrane potential was made positive inside; full activation required seconds to be complete, no inactivation being appreciable. Deactivation (or current block) upon membrane repolarization was so fast that no inward current could be detected in any case. The reversal potential, estimated by interpolating the I/V diagrams, was -30 mV using standard Ringer as electrode filling solution, and the elementary conductance was 95 pS. Neither reversal potential nor elementary conductance were affected by removal of external Ca2+ (Mg2+ or Ba2+ substitution) or external Cl- (methanesulphonate substitution). The reversal potential moved towards positive potentials by substituting external Na+ with K+, the magnitude of the shifts being consistent with a ratio PK/PNa = 6.4. A distinctive property of the current/voltage relation for this K-current is its anomalous bell-shape, the outward current displaying a maximum at membrane potentials around 75 mV with standard Ringer as electrode filling solution and tending to zero with more positive potentials.  相似文献   

15.
The relationship between the plasma membrane potential and activation of sperm motility and respiration, or induction of the acrosome reaction, was explored in sperm of the sea urchin Strongylocentrotus purpuratus. Plasma and mitochondrial membrane potentials were estimated by measuring the uptake of [14C]thiocyanate ( [14C]SCN-) and [3H]tetraphenylphosphonium ( [3H]TPP+) in intact sperm and sperm made permeant with digitonin. Mitochondrial potentials up to-185 mV were found, consistent with data for TPP+ uptake into mitochondria from other cell types. Values for TPP+ uptake corrected for mitochondrial accumulation and estimates of SCN- uptake both indicated that the plasma membrane potential was about -30 mV for actively respiring sperm in seawater and about -60 mV for quiescent sperm in Na+-free seawater. Activation of sperm motility and respiration induced by Na+ increased the intracellular pH and caused a depolarization of both the plasma membrane and mitochondrial potentials. However, membrane potential depolarization did not occur when the activation was induced by increased extracellular pH or by the peptide speract, although activation was always linked to increased intracellular pH. The acrosome reaction, on the other hand, was always associated with sperm plasma membrane potential depolarization, whether it was induced by the physiological effector from the egg surface or by several artificial triggering regimens. Thus, activation of respiration and motility is primarily controlled by increased intracellular pH (Christen, R., Schackmann, R. W., and Shapiro, B. M. (1982) J. Biol. Chem. 257, 14881-14890), whereas the acrosome reaction also requires depolarization of the plasma membrane potential.  相似文献   

16.
Presynaptic and postsynaptic potentials were examined by intracellular recording at a crayfish neuromuscular junction. During normal synaptic transmission, the action potentials were recorded in the terminal region of the excitatory axon and postsynaptic responses were obtained in the muscle fibers. We found that it was possible to modify the synaptic transmission by applying depolarizing or hyperpolarizing currents through the presynaptic intracellular electrode. Typically, a 7-15 mV depolarization lasting longer than 50 msec leads to a large (500%) enhancement of transmitter release, even though the preterminal action potential is reduced in amplitude. Hyperpolarization increases the amplitude of the action potential, but slightly reduces the transmitter release. These results are different from those reported for other neuromuscular synapses and the squid giant synapse, but are similar in many respects to the results reported for several invertebrate central synapses. We conclude, first, that different synapses may have markedly different responses to conditioning by membrane polarization and, secondly, that maintained low-level depolarization may induce a potentiated state in the nerve terminal, perhaps brought about by slow entry of calcium.  相似文献   

17.
From somata of the pacemaker neurons in the Squilla heart ganglion, pacemaker potentials for the spontaneous periodic burst discharge are recorded with intracellular electrodes. The electrical activity is composed of slow potentials and superimposed spikes, and is divided into four types, which are: (a) "mammalian heart" type, (b) "slow generator" type, (c) "slow grower" type, and (d) "slow deficient" type. Since axons which are far from the somata do not produce slow potentials, the soma and dendrites must be where the slow potentials are generated. Hyperpolarization impedes generation of the slow potential, showing that it is an electrically excitable response. Membrane impedance increases on depolarization. Brief hyperpolarizing current can abolish the plateau but brief tetanic inhibitory fiber stimulation is more effective for the abolition. A single stimulus to the axon evokes the slow potential when the stimulus is applied some time after a previous burst. Repetitive stimuli to the axon are more effective in eliciting the slow potential, but the depolarization is not maintained on continuous stimulation. Synchronization of the slow potential among neurons is achieved by: (a) the electrotonic connections, with periodic change in resistance of the soma membrane, (b) active spread of the slow potential, and (c) synchronization through spikes.  相似文献   

18.
The effects of external application of micromolar concentrations of toxin 1 of the scorpion, Androctonus australis Hector, on the sodium conductance of squid giant axons have been studied quantitatively using the voltage clamp technique. Toxin concentrations which induce long plateau action potentials under current clamp conditions were found to simultaneously decrease the peak conductance and increase the delayed sodium conductance. Return to holding potential level after step depolarizations was accompanied by large exponential tails of current. The toxin-induced maintained sodium conductance increased with membrane depolarization independently of the peak conductance. Depolarizing conditioning prepulses to - 30 mV were found to almost totally inactivate the peak sodium current but to leave the delayed conductance unaffected. This property was taken as an indication that the total current is made of the added contributions of two distinct populations on sodium channels : fast activating and inactivating channels and slow activating channels. These two channel populations were separated from each other and analysed. It was found that the fast channels were almost identical to normal channels whereas the slow channels had a much slower (nearly exponential) kinetics and activated for more positive values of membrane potential. These observations strongly support the second hypothesis of Gillespie and Meves (1980) that the peak conductance and maintained conductance reflect the existence of two separate populations of channels. They further indicate that slow channels probably originate from the modification by the toxin of normal voltage-sensitive channels.  相似文献   

19.
王阿敬  李之望 《生理学报》1989,41(2):145-152
本文应用细胞内记录方法,对去甲肾上腺素(NA)引起蟾蜍背根神经节(DRG)神经细胞膜电位去极化或超极化反应时的膜电导及翻转电位值进行了测量,并观察了钾和钙离子通道阻断剂灌流DRG对NA引起膜电位反应的影响。当NA引起去极化反应时,15个细胞的膜电导减小32.6%。少数细胞膜电导开始增加,继而减小(n=4)。NA超极化反应时膜电导增加13.2%(n=8)。NA去极化反应的翻转电位值为-88.5±0.9mV((?)±SE,n=4),NA超极化反应在膜电位处于-89至-92mV时消失。 钾通道阻断剂四乙铵可使NA去极化幅值增加73.7±11.9%((?)±SE,n=7),并使NA超极化幅值减小40.5%(n=4)。细胞内注入氯化铯使苯肾上腺素去极化幅值增加34.5%(n=4)。钙通道阻断剂氯化锰使NA去极化及超极化反应分别减小50.5±9.9%((?)±SE,n=10)和89.5±4.9%((?)±SE,n=7)。结果提示,NA引起DRG神经细胞膜电位的去极化或超极化反应,可能与膜的钾及钙通道活动的改变有关。  相似文献   

20.
When depolarized from typical resting membrane potentials (V(rest) approximately -90 mV), cardiac sodium (Na) currents are more sensitive to local anesthetics than brain or skeletal muscle Na currents. When expressed in Xenopus oocytes, lidocaine block of hH1 (human cardiac) Na current greatly exceeded that of mu1 (rat skeletal muscle) at membrane potentials near V(rest), whereas hyperpolarization to -140 mV equalized block of the two isoforms. Because the isoform-specific tonic block roughly parallels the drug-free voltage dependence of channel availability, isoform differences in the voltage dependence of fast inactivation could underlie the differences in block. However, after a brief (50 ms) depolarizing pulse, recovery from lidocaine block is similar for the two isoforms despite marked kinetic differences in drug-free recovery, suggesting that differences in fast inactivation cannot entirely explain the isoform difference in lidocaine action. Given the strong coupling between fast inactivation and other gating processes linked to depolarization (activation, slow inactivation), we considered the possibility that isoform differences in lidocaine block are explained by differences in these other gating processes. In whole-cell recordings from HEK-293 cells, the voltage dependence of hH1 current activation was approximately 20 mV more negative than that of mu1. Because activation and closed-state inactivation are positively coupled, these differences in activation were sufficient to shift hH1 availability to more negative membrane potentials. A mutant channel with enhanced closed-state inactivation gating (mu1-R1441C) exhibited increased lidocaine sensitivity, emphasizing the importance of closed-state inactivation in lidocaine action. Moreover, when the depolarization was prolonged to 1 s, recovery from a "slow" inactivated state with intermediate kinetics (I(M)) was fourfold longer in hH1 than in mu1, and recovery from lidocaine block in hH1 was similarly delayed relative to mu1. We propose that gating processes coupled to fast inactivation (activation and slow inactivation) are the key determinants of isoform-specific local anesthetic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号