首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
AimsRecently, we demonstrated that cultured mouse astrocytes exhibited basal channel opening of P2X7 receptor (P2X7R) in the absence of any exogenous ligand, but the regulatory mechanism involved was not elucidated. Since our preliminary experiments suggested possible involvement of peroxisome proliferator-activated receptor (PPAR) γ in the regulation, we examined whether PPARγ regulated P2X7R basal channel opening in mouse astrocytes.Main methodsP2X7R channel opening was assessed as to the uptake of a marker dye, YO-PRO-1® (YP), in the presence or absence of agonists and antagonists for PPARγ under a fluorescence microscope. Expression of PPARγ was evaluated by Western blotting and immunocytochemistry.Key findingsNSAIDs such as flufenamic acid (FFA) and indomethacin, which are a cyclooxygenase inhibitor and a PPARγ agonist, showed enhancing and inhibiting effects on YP uptake at low and high concentrations, respectively, and the enhanced uptake was abolished by periodate-oxidized ATP (oxATP), a selective P2X7R antagonist. The PPARγ agonists 15-deoxy-Δ12,14-prostaglandin J2 and ciglitazone decreased the basal and FFA-enhanced YP uptake, while the antagonist GW9662 increased YP uptake, this effect being blocked by the agonists and also by oxATP. PPARγ was distributed in the nucleus and cytosolic/membrane fraction of cultured mouse astrocytes.SignificanceThese findings indicate that basal channel opening of P2X7R in mouse astrocytes is at least in part regulated by PPARγ.  相似文献   

2.
The purinergic P2X(7) receptor (P2X(7)R) can mediate glutamate release from cultured astrocytes. Using patch clamp recordings, we investigated whether P2X(7)Rs have the same action in hippocampal astrocytes in situ. We found that 2- and 3-O-(4-benzoylbenzoyl)ATP (BzATP), a potent, although unselective P2X(7)R agonist, triggers two different glutamate-mediated responses in CA1 pyramidal neurons; they are transient inward currents, which have the kinetic and pharmacological properties of previously described slow inward currents (SICs) due to Ca(2+)-dependent glutamate release from astrocytes, and a sustained tonic current. Although SICs were unaffected by P2X(7)Rs antagonists, the tonic current was inhibited, was amplified in low extracellular Ca(2+), and was insensitive to glutamate transporter and hemichannel inhibitors. BzATP triggered in astrocytes a large depolarization that was inhibited by P2X(7)R antagonists and amplified in low Ca(2+). In low Ca(2+) BzATP also induced lucifer yellow uptake into a subpopulation of astrocytes and CA3 neurons. Our results demonstrate that purinergic receptors other than the P2X(7)R mediate glutamate release that evokes SICs, whereas activation of a receptor that has features similar to the P2X(7)R, mediates a sustained glutamate efflux that generates a tonic current in CA1 neurons. This sustained glutamate efflux, which is potentiated under non-physiological conditions, may have important pathological actions in the brain.  相似文献   

3.
BackgroundGlial cells such as astrocytes and microglia play an important role in the central nervous system via communication between these glial cells. Activated microglia can exhibit either the inflammatory M1 phenotype or the anti-inflammatory M2 phenotype, which influences astrocytic neuroprotective functions, including engulfment of cell debris. Recently, extracellular zinc has been shown to promote the inflammatory M1 phenotype in microglia through intracellular zinc accumulation and reactive oxygen species (ROS) generation.PurposeHere, we investigated whether the zinc-enhanced inflammatory M1 phenotype of microglia affects the astrocytic engulfing activity.MethodsEngulfing activity was assessed in astrocytes treated with microglial-conditioned medium (MCM) from lipopolysaccharide (LPS)-activated or from ZnCl2-pretreated LPS-activated M1 microglia. The effect of zinc on microglia phenotype was also validated using the zinc chelator N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and the ROS scavenger Trolox.ResultsAlthough treatment of astrocytes with LPS showed no significant effect on the engulfing activity, MCM from LPS-induced M1 microglia increased the beads uptake by astrocytes. This increased uptake activity was suppressed when MCM from LPS-induced M1 microglia pretreated with ZnCl2 was applied to astrocytes, which was further abolished by the intracellular zinc chelator TPEN and the ROS scavenger Trolox. In addition, expression of P2×7 receptors (P2×7R) was increased in astrocytes treated with MCM derived from M1 microglia but not in the M1 microglia pretreated with ZnCl2.ConclusionThese findings suggest that zinc pre-treatment abolishes the ability of LPS-induced M1 microglia to increase the engulfing activity in astrocytes via alteration of astrocytic P2×7R.  相似文献   

4.
The opening of pannexin-1 (Px1) hemichannels is regulated by the activity of P2X(7) receptors (P2X(7)Rs). At present, however, little is known about how extracellular ATP-sensitive P2X(7)Rs regulates the opening and closure of Px1 hemichannels. Several lines of evidence suggest that P2X(7)Rs are activated under pathological conditions such as ischemia, resulting in the opening of Px1 hemichannels responsible for the massive influx of Ca(2+) from the extracellular space and the release of ATP from the cytoplasm, leading to cell death. Here we show in cultured astrocytes that the suppression of the activity of P2X(7)Rs during simulated ischemia (oxygen/glucose deprivation, OGD) resulted in the opening of Px1 hemichannels, leading to the enhanced release of ATP. In addition, the suppression of the activity of P2X(7)Rs during OGD resulted in a significant increase in astrocytic damage. Both the P2X(7)Rs suppression-induced enhancement of the release of ATP and cell damage were reversed by co-treatment with blockers of Px1 hemichannels, suggesting that suppression of the activity of PX(7)Rs resulted in the opening of Px1 hemichannels. All these findings suggested the existence of a negative-feedback loop regulating the release of ATP via Px1 hemichannels; ATP-induced suppression of ATP release. The present study indicates that ATP, released through Px1 hemichannels, activates P2X(7)Rs, resulting in the closure of Px1 hemichannels during ischemia. This negative-feedback mechanism, suppressing the loss of cellular ATP and Ca(2+) influx, might contribute to the survival of astrocytes under ischemic stress.  相似文献   

5.
Ionic “vital dyes” are commonly used to assess cell viability based on the idea that their permeation is contingent on a loss of membrane integrity. However, the possibility that dye entry is conducted into live cells by endogenous membrane transporters must be recognized and controlled for. Several cation-selective plasma membrane-localized ion channels, including the adenosine 5?-triphosphate (ATP)-gated P2X receptors, have been reported to conduct entry of the DNA-binding fluorescence dye, YO-PRO-1, into live cells. Extracellular ATP often becomes elevated as a result of release from dying cells, and so it is possible that activation of P2X channels on neighboring live cells could lead to exaggerated estimation of cytotoxicity. Here, we screened a number of fluorescent vital dyes for ion channel-mediated uptake in HEK293 cells expressing recombinant P2X2, P2X7, or TRPV1 channels. Our data shows that activation of all three channels caused substantial uptake and nuclear accumulation of YO-PRO-1, 4?,6-diamidino-2-phenylindole (DAPI), and Hoechst 33258 into transfected cells and did so well within the time period usually used for incubation of cells with vital dyes. In contrast, channel activation in the presence of propidium iodide and SYTOX Green caused no measurable uptake and accumulation during a 20-min exposure, suggesting that these dyes are not likely to exhibit measurable uptake through these particular ion channels during a conventional cell viability assay. Caution is encouraged when choosing and employing cationic dyes for the purpose of cell viability assessment, particularly when there is a likelihood of cells expressing ion channels permeable to large ions.  相似文献   

6.
The purinergic P2X7 receptor (P2X7R) has attracted considerable interest as a potential target for various central nervous system (CNS) pathologies including affective and neurodegenerative disorders. To date, the distribution and cellular localization of the P2X7R in the brain are not fully resolved and a matter of debate mainly due to the limitations of existing tools. However, this knowledge should be a prerequisite for understanding the contribution of the P2X7R to brain disease. Here, we generated a genetic mouse model by humanizing the P2X7R in the mouse as mammalian model organism. We demonstrated its functionality and revealed species-specific characteristics of the humanized receptor, compared to the murine ortholog, regarding its receptivity to activation and modulation by 2′,3′-O-(benzoyl-4-benzoyl)-adenosine 5′-triphosphate (BzATP) and trifluoperazine (TFP). This humanized P2rx7 allele is accessible to spatially and temporally controlled Cre recombinase-mediated inactivation. In contrast to previously generated knockout (KO) mice, none of the described P2rx7 splice variants evade this null allele. By selective disruption and assessment of human P2RX7 expression in different brain regions and cell types, we were able to demonstrate that the P2X7R is specifically expressed in glutamatergic pyramidal neurons of the hippocampus. Also, P2X7R is expressed in major non-neuronal lineages throughout the brain, i.e., astrocytes, oligodendrocytes, and microglia. In conclusion, this humanized mouse model provides the means for detailed assessment of human P2X7R function in vivo including evaluation of agonists or antagonists. In addition, this conditional allele will enable future loss-of-function studies in conjunction with mouse models for CNS disorders.  相似文献   

7.
P2X7 receptors (P2X7Rs) affect many epithelial cell functions including transcellular ion transport, secretion, and cell death. Here we used parotid acinar and duct cells to reveal the unique cell-specific assembly and gating of the P2X7R channels. Immunolocalization indicated expression of P2X7Rs in the luminal membrane of both cell types. Stimulation with 5 mm ATP raised [Ca2+]i levels in a cell-specific manner and activated multiple currents. The current mediated by P2X7R was isolated by infusing the cells with high [EGTA]. The initial activation of acinar cell P2X7Rs by ATP was slow requiring approximately 2.5 min. Subsequent removal and addition of ATP, however, resulted in rapid inhibition and activation (gating) of the P2X7Rs. By contrast, P2X7Rs in duct cells displayed only rapid gating by ATP. Activation of P2X7Rs in both cell types was verified by (a) low Km for ATP, (b) sensitivity to external divalent ions, (c) lack of desensitization/inactivation, (d) permeability to Na+, and (e) inhibition by Brilliant Blue G, Cu2+, and pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium. The slow P2X7R activation in acinar cells was not affected by manipulation of exo-/endocytosis. Rather, disassembly or solidification of the actin cytoskeleton prior to incubation with ATP prevented channel assembly. Remarkably, after completion of the slow activation, manipulation of the actin cytoskeleton no longer affected gating by ATP. Accordingly, manipulation of the actin cytoskeleton had no effect on P2X7R gating by ATP in duct cells. We concluded that P2X7Rs are not active in resting acinar cells. On exposure to ATP, P2X7Rs are assembled into functional channels with the aid of the actin cytoskeleton. Once assembled, P2X7Rs are subject to rapid gating by ATP. Duct cell P2X7Rs are preassembled and therefore continually subject to rapid gating by ATP. This cell-specific behavior may reflect the specific function of P2X7Rs in the two cell types.  相似文献   

8.
Extracellular nucleotides can modulate the immunological response by activating purinergic receptors (P2Rs) on the cell surface of macrophages, dendritic, and other immune cells. In particular, the activation of P2X7R can induce release of cytokines and cell death as well as the uptake of large molecules through the cell membrane by a mechanism still poorly understood. Polyoxotungstate-1 (POM-1) has been proposed as a potent inhibitor of ecto-nucleotidases, enzymes that hydrolyze extracellular nucleotides, regulating the activity of P2Rs. However, the potential impact of POM-1 on P2Rs has not been evaluated. Here, we used fluorescent dye uptake, cytoplasmic free Ca2+ concentration measurement, patch-clamp recordings, scanning electron microscopy, and quantification of inflammatory mediators to investigate the effects of POM-1 on P2Rs of murine macrophages. We observed that POM-1 blocks the P2YR-dependent cytoplasmic Ca2+ increase and has partial effects on the cytoplasmic Ca2+, increasing dependence on P2XRs. POM-1 can inhibit the events related with ATP-dependent inflammasome activation, anionic dye uptake, and also the opening of large conductance channels, which are associated with P2X7R-dependent pannexin-1 activation. On the other hand, this compound has no effects on cationic fluorescent dye uptake, apoptosis, and bleb formation, also dependent on P2X7R. Moreover, POM-1 can be considered an anti-inflammatory compound, because it prevents TNF-α and nitric oxide release from LPS-treated macrophages.  相似文献   

9.
The P2X7 purinergic receptor is an ATP-gated cation channel with an emerging role in neoplasia. In this study we demonstrate that the human KG-1 cell line, a model of acute myelogenous leukaemia, expresses functional P2X7. RT-PCR and immunochemical techniques demonstrated the presence of P2X7 mRNA and protein respectively in KG-l cells, as well as in positive control multiple myeloma RPMI 8226 cells. Flow cytometric measurements demonstrated that ATP induced ethidium+ uptake into KG-l cells suspended in sucrose medium (EC50 of ∼3 μM), but not into cells in NaCl medium. In contrast, ATP induced ethidium+ uptake into RPMI 8226 cells suspended in either sucrose or NaCl medium (EC50 of ∼3 or ∼99 μM, respectively), as well as into RPMI 8226 cells in KCl medium (EC50 of ∼18 μM). BzATP and to a lesser extent ATPγS and αβ-methylene ATP, but not ADP or UTP, also induced ethidium+ uptake into KG-1 cells. ATP-induced ethidium+ uptake was completely impaired by the P2X7 antagonists, AZ10606120 and A-438079. ATP-induced ethidium+ uptake was also impaired by probenecid but not by carbenoxolone, both pannexin-1 antagonists. ATP induced YO-PRO-12+ and propidium2+ uptake into KG-1 cells. Finally, sequencing of full-length P2X7 cDNA identified several single nucleotide polymorphisms (SNPs) in KG-1 cells including H155Y, A348T, T357S and Q460R. RPMI 8226 cells contained A348T, A433V and H521Q SNPs. In conclusion, the KG-1 cell line expresses functional P2X7. This cell line may help elucidate the signalling pathways involved in P2X7-induced survival and invasiveness of myeloid leukaemic cells.  相似文献   

10.
The adenosine 5′-triphosphate (ATP)-gated P2X7 receptor is a membrane-bound, non-selective cation channel, expressed in a variety of cell types. The P2X7 senses high extracellular ATP concentrations and seems to be implicated in a wide range of cellular functions as well as pathophysiological processes, including immune responses and inflammation, release of gliotransmitters and cytokines, cancer cell growth or development of neurodegenerative diseases. In the present study, we identified natural compounds and analogues that can block or sensitize the ATP (1 mM)-induced Ca2+ response using a HEK293 cell line stably expressing human P2X7 and fluorometric imaging plate reader technology. For instance, teniposide potently blocked the human P2X7 at sub-miromolar concentrations, but not human P2X4 or rat P2X2. A marked block of ATP-induced Ca2+ entry and Yo-Pro-1 uptake was also observed in human A375 melanoma cells and mouse microglial cells, both expressing P2X7. On the other hand, agelasine (AGL) and garcinolic acid (GA) facilitated the P2X7 response to ATP in all three cell populations. GA also enhanced the YO-PRO-1 uptake, whereas AGL did not affect the ATP-stimulated intracellular accumulation of this dye. According to the pathophysiological role of P2X7 in various diseases, selective modulators may have potential for further development, e.g. as neuroprotective or antineoplastic drugs.  相似文献   

11.
γ-Aminobutyric acid type A receptors (GABA(A)Rs) in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X(2) receptors (P2X(2)Rs) are also expressed in spinal cord neurons and are known to cross-talk with GABA(A)Rs. Here, we investigated a possible "dynamic" interaction between GABA(A)Rs and P2X(2)Rs using co-immunoprecipitation and fluorescence resonance energy transfer (FRET) studies in human embryonic kidney (HEK) 293 cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X(2)Rs forms a transient complex with GABA(A)Rs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface, where P2X(2)Rs and GABA(A)Rs are primarily located extra-synaptically. Furthermore, agonist-induced activation of P2X(2)Rs results in a Ca(2+)-dependent as well as an apparently Ca(2+)-independent increase in the mobility and an enhanced degradation of GABA(A)Rs, whereas P2X(2)Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2X(2)Rs and GABA(A)Rs could be used for specific targeting to neuronal membranes, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABA(A)Rs.  相似文献   

12.
To investigate fast purinergic signaling in invertebrates, we examined the functional properties of a P2X receptor subunit cloned from the parasitic platyhelminth Schistosoma mansoni. This purinoceptor (SmP2X) displays unambiguous homology of primary sequence with vertebrate P2X subunits. SmP2X subunits assemble into homomeric ATP-gated channels that exhibit slow activation kinetics and are blocked by suramin and PPADS but not TNP-ATP. SmP2X mediates the uptake of the dye YO-PRO-1 through the formation of large pores and can be blocked by submicromolar concentrations of extracellular Zn2+ ions (IC50 = 0.4 microM). The unique receptor phenotype defined by SmP2X suggests that slow kinetics, modulation by zinc and the ability to form large pores are ancestral properties of P2X receptors. The high sensitivity of SmP2X to zinc further reveals a zinc regulation requirement for the parasite's physiology that could potentially be exploited for therapeutic purposes.  相似文献   

13.
J. Neurochem. (2012) 122, 1118-1128. ABSTRACT: P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.  相似文献   

14.
To investigate fast purinergic signaling in invertebrates, we examined the functional properties of a P2X receptor subunit cloned from the parasitic platyhelminth Schistosoma mansoni. This purinoceptor (SmP2X) displays unambiguous homology of primary sequence with vertebrate P2X subunits. SmP2X subunits assemble into homomeric ATP-gated channels that exhibit slow activation kinetics and are blocked by suramin and PPADS but not TNP-ATP. SmP2X mediates the uptake of the dye YO-PRO-1 through the formation of large pores and can be blocked by submicromolar concentrations of extracellular Zn2+ ions (IC50=0.4 μM). The unique receptor phenotype defined by SmP2X suggests that slow kinetics, modulation by zinc and the ability to form large pores are ancestral properties of P2X receptors. The high sensitivity of SmP2X to zinc further reveals a zinc regulation requirement for the parasite's physiology that could potentially be exploited for therapeutic purposes.  相似文献   

15.
The P2X7 receptor (P2X7R) has been implicated in the process of multinucleation and cell fusion. We have previously demonstrated that blockade of P2X7Rs on osteoclast precursors using a blocking antibody inhibited multinucleated osteoclast formation in vitro, but that P2X7R KO mice maintain the ability to form multinucleated osteoclasts. This apparent contradiction of the role the P2X7R plays in multinucleation has prompted us to examine the effect of the most commonly used and recently available P2X7R antagonists on osteoclast formation and function. When added to recombinant RANKL and M-CSF human blood monocytes cultures, all but one compound, decreased the formation and function of multinucleated TRAP-positive osteoclasts in a concentration-dependent manner. These data provide further evidence for the role of the P2X7R in the formation of functional human multinucleated osteoclasts and highlight the importance of selection of antagonists for use in long-term experiments.  相似文献   

16.
Human P2X7 receptors (hP2X7Rs) belong to the P2X family, which opens an intrinsic cation channel when challenged by extracellular ATP. hP2X7Rs are expressed in cells of the inflammatory and immune system. During inflammation, ATP and protons are secreted into the interstitial fluid. Therefore, we investigated the effect of protons on the activation of hP2X7Rs. hP2X7Rs were expressed in Xenopus laevis oocytes and activated by the agonists ATP or benzoyl-benzoyl-ATP (BzATP) at different pH values. The protons reduced the hP2X7R-dependent cation current amplitude and slowed the current deactivation depending on the type and concentration of the agonist used. These effects can be explained by (i) the protonation of ATP, which reduces the effective concentration of the agonist ATP4− at the high- and low-affinity ATP activation site of the hP2XR, and (ii) direct allosteric inhibition of the hP2X7R channel opening that follows ATP4− binding to the low-affinity activation site. Due to the hampered activation via the low-affinity activation site, a low pH (as observed in inflamed tissues) leads to a relative increase in the contribution of the high-affinity activation site for hP2X7R channel opening.  相似文献   

17.
Extracellular ATP has recently been identified as an important regulator of cell death in response to pathological insults. When SN4741 cells, which are dopaminergic neurons derived from the substantia nigra of transgenic mouse embryos, are exposed to ATP, cell death occurs. This cell death is associated with prominent cell swelling, loss of ER integrity, the formation of many large cytoplasmic vacuoles, and subsequent cytolysis and DNA release. In addition, the cleavage of caspase-3, a hallmark of apoptosis, is induced by ATP treatment. However, caspase inhibitors do not overcome ATP-induced cell death, indicating that both necrosis and apoptosis are associated with ATP-induced cell death and suggesting that a necrotic event might override the apoptotic process. In this study we also found that P2X(7) receptors (P2X(7)Rs) are abundantly expressed in SN4741 cells, and both ATP-induced swelling and cell death are reversed by pretreatment with the P2X(7)Rs antagonist, KN62, or by knock-down of P2X(7)Rs with small interfering RNAs. Therefore, extracellular ATP release from injured tissues may act as an accelerating factor in necrotic SN4741 dopaminergic cell death via P2X(7)Rs.  相似文献   

18.
Glutamate clearance by astrocytes is critical for controlling excitatory neurotransmission and ATP is an important mediator for neuron-astrocyte interaction. However, the effect of ATP on glutamate clearance has never been examined. Here we report that treatment of RBA-2 cells, a type-2-like astrocyte cell line, with ATP and the P2X(7) receptor selective agonist 3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) decreased the Na+-dependent [3H]glutamate uptake within minutes. Mechanistic studies revealed that the decreases were augmented by removal of extracellular Mg2+ or Ca2+, and was restored by P2X7 selective antagonist , periodate-oxidized 2',3'-dialdehyde ATP (oATP), indicating that the decreases were mediated through P2X(7) receptors. Furthermore, stimulation of P2X7 receptors for 2 h inhibited both activity and protein expression of glutamine synthetase (GS), and oATP abolished the inhibition. In addition, removal of extracellular Ca(2+) and inhibition of protein kinase C (PKC) restored the ATP-decreased GS expression but failed to restore the P2X(7)-decreased [3H]glutamate uptake. Therefore, P2X7-mediated intracellular signals play a role in the down-regulation of GS activity/expression. Activation of P2X7 receptors stimulated increases in intracellular Na+ concentration ([Na+](i)) suggesting that the P2X(7)-induced increases in [Na+](i) may affect the local Na+ gradient and decrease the Na+-dependent [3H]glutamate uptake. These findings demonstrate that the P2X7-mediated decreases in glutamate uptake and glutamine synthesis were mediated through distinct mechanisms in these cells.  相似文献   

19.
The P2X7 receptor is an extracellular ATP-gated cation channel critical in inflammation and immunity, and can be up-regulated by IFN-γ and LPS. This study aimed to examine the effect of TGF-β1 on the up-regulation of P2X7 function and expression in leukemic THP-1 monocytes differentiated with IFN-γ and LPS. Cell-surface molecules including P2X7 were examined by immunofluorescence staining. Total P2X7 protein and mRNA was assessed by immunoblotting and RT-PCR respectively. P2X7 function was evaluated by ATP-induced cation dye uptake measurements. Cell-surface P2X7 was present on THP-1 cells differentiated for 3 days with IFN-γ and LPS but not on undifferentiated THP-1 cells. ATP induced ethidium+ uptake into differentiated but not undifferentiated THP-1 cells, and the P2X7 antagonist, KN-62, impaired ATP-induced ethidium+ uptake. Co-incubation of cells with TGF-β1 plus IFN-γ and LPS prevented the up-regulation of P2X7 expression and ATP-induced ethidium+ uptake in a concentration-dependent fashion with a maximum effect at 5 ng/ml and with an IC50 of ~ 0.4 ng/ml. Moreover, ATP-induced YO-PRO-12+ uptake and IL-1β release were abrogated in cells co-incubated with TGF-β1. TGF-β1 also abrogated the amount of total P2X7 protein and mRNA induced by IFN-γ and LPS. Finally, TGF-β1 prevented the up-regulation of cell-surface CD86, but not CD14 and MHC class II, by IFN-γ and LPS. These results indicate that TGF-β1 prevents the up-regulation of P2X7 function and expression by IFN-γ and LPS in THP-1 monocytes. This suggests that TGF-β1 may limit P2X7-mediated processes in inflammation and immunity.  相似文献   

20.
P2X7 receptors (P2X7Rs) are nonselective cation channels that are opened by the binding of extracellular ATP and are involved in the modulation of epithelial secretion, inflammation and nociception. Here, we investigated the effect of extracellular anions on channel gating and permeation of human P2X7Rs (hP2X7Rs) expressed in Xenopus laevis oocytes. Two-microelectrode voltage-clamp recordings showed that ATP-induced hP2X7R-mediated currents increased when extracellular chloride was substituted by the organic anions glutamate or aspartate and decreased when chloride was replaced by the inorganic anions nitrate, sulfate or iodide. ATP concentration-response comparisons revealed that substitution of chloride by glutamate decreased agonist efficacy, while substitution by iodide increased agonist efficacy at high ATP concentrations. Meanwhile, the ATP potency remained unchanged. Activation of the hP2X7R at low ATP concentrations via the high-affinity ATP effector site was not affected by the replacement of chloride by glutamate or iodide. To analyze the anion effect on the hP2X7R at the single-molecule level, we performed single-channel current measurements using the patch-clamp technique in the outside-out configuration. Chloride substitution did not affect the single-channel conductance, but the probability that the P2X7R channel was open increased when chloride was replaced by glutamate and decreased when chloride was replaced by iodide. This effect was due to an influence of the anions on the mean closed times of the hP2X7R channel. We conclude that hP2X7R channels are not anion-permeable in physiological Na+-based media and that external anions allosterically affect ion channel opening in the fully ATP4-liganded P2X7R through an extracellular anion binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号