首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

2.
We describe an efficient NMR triple resonance approach for fast assignment of backbone amide resonance peaks in the 15N-HSQC spectrum. The exceptionally high resolutions achieved in the 3D HncocaNH and hNcocaNH experiments together with non-uniform sampling facilitate error-free sequential connection of backbone amides. Data required for the complete backbone amide assignment of the 56-residue protein GB1 domain were obtained in 14 h. Data analysis was vastly streamlined using a ‘backbone NH walk’ method to determine sequential connectivities without the need for 13C chemical shifts comparison. Amino acid residues in the sequentially connected NH chains are classified into two groups by a simple variation of the NMR pulse sequence, and the resulting ‘ZeBra’ stripe patterns are useful for mapping these chains to the protein sequence. In addition to resolving ambiguous assignments derived from conventional backbone experiments, this approach can be employed to rapidly assign small proteins or flexible regions in larger proteins, and to transfer assignments to mutant proteins or proteins in different ligand-binding states.  相似文献   

3.
PACES: Protein sequential assignment by computer-assisted exhaustive search   总被引:1,自引:0,他引:1  
A crucial step in determining solution structures of proteins using nuclear magnetic resonance (NMR) spectroscopy is the process of sequential assignment, which correlates backbone resonances to corresponding residues in the primary sequence of a protein, today, typically using data from triple-resonance NMR experiments. Although the development of automated approaches for sequential assignment has greatly facilitated this process, the performance of these programs is usually less satisfactory for large proteins, especially in the cases of missing connectivity or severe chemical shift degeneracy. Here, we report the development of a novel computer-assisted method for sequential assignment, using an algorithm that conducts an exhaustive search of all spin systems both for establishing sequential connectivities and then for assignment. By running the program iteratively with user intervention after each cycle, ambiguities in the assignments can be eliminated efficiently and backbone resonances can be assigned rapidly. The efficiency and robustness of this approach have been tested with 27 proteins of sizes varying from 76 amino acids to 723 amino acids, and with data of varying qualities, using experimental data for three proteins, and published assignments modified with simulated noise for the other 24. The complexity of sequential assignment with regard to the size of the protein, the completeness of NMR data sets, and the uncertainty in resonance positions has been examined.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1023589029301  相似文献   

4.
M Ikura  L E Kay  A Bax 《Biochemistry》1990,29(19):4659-4667
A novel approach is described for obtaining sequential assignment of the backbone 1H, 13C, and 15N resonances of larger proteins. The approach is demonstrated for the protein calmodulin (16.7 kDa), uniformly (approximately 95%) labeled with 15N and 13C. Sequential assignment of the backbone residues by standard methods was not possible because of the very narrow chemical shift distribution range of both NH and C alpha H protons in this largely alpha-helical protein. We demonstrate that the combined use of four new types of heteronuclear 3D NMR spectra together with the previously described HOHAHA-HMQC 3D experiment [Marion, D., et al. (1989) Biochemistry 28, 6150-6156] can provide unambiguous sequential assignment of protein backbone resonances. Sequential connectivity is derived from one-bond J couplings and the procedure is therefore independent of the backbone conformation. All the new 3D NMR experiments use 1H detection and rely on multiple-step magnetization transfers via well-resolved one-bond J couplings, offering high sensitivity and requiring a total of only 9 days for the recording of all five 3D spectra. Because the combination of 3D spectra offers at least two and often three independent pathways for determining sequential connectivity, the new assignment procedure is easily automated. Complete assignments are reported for the proton, carbon, and nitrogen backbone resonances of calmodulin, complexed with calcium.  相似文献   

5.
Summary The backbone NMR resonances of human carbonic anhydase I (HCA I) have been assigned. This protein is one of the largest monomeric proteins assigned so far. The assignment was enabled by a combination of 3D triple-resonance experiments and extensive use of amino acid-specific 15N-labeling. The obtained resonance assignment has been used to evaluate the secondary structure elements present in solution. The solution structure appears to be very similar to the crystal structure, although some differences can be observed. Proton-deuteron exchange experiments have shown that the assignments provide probes that can be used in future folding studies of HCA I.The chemical shift data have been deposited in the BioMagResBank in Madison, WI, U.S.A.  相似文献   

6.
A new strategy for the sequential assignment of backbone proton resonances in larger proteins involving a unique combination of four types of heteronuclear three-dimensional (3D) NMR spectroscopies is reported. This method relies on the uniform labeling of amide nitrogens with 15N and of alpha-carbons with 13C. Heteronuclear 1H-15N TOCSY-HMQC and NOESY-HMQC experiments can reveal connections between cross-peaks arising from the NHi-C alpha Hi-1 and NHi-C alpha Hi connectivities in the finger-print region in in general. They also specifically reveal the sequential amide-amide connectivities among the amide cross-peaks for the alpha-helices. Heteronuclear 1H-13C HMQC-TOCSY and HMQC-NOESY experiments can reveal connections between cross-peaks arising from the NHi-C alpha Hi and NHi+1-C alpha Hi connectivities in the finger-print region in general. The combination of the two sets of results reveals the complete unambiguous sequential connection of cross-peaks for the proton resonances in the peptide backbone. The application of the new strategy is reported for a protein, ribonuclease H, with a molecular weight of 17.6 kDa.  相似文献   

7.
One of the small proteins from Helicobacter pylori, acyl carrier protein (ACP), was investigated by NMR. ACP is related to various cellular processes, especially with the biosynthesis of fatty acid. The basic NMR resonance assignment is a prerequisite for the validation of a heterologous protein interaction with ACP in H. pylori. Here, the results of the backbone (1)H, (15)N, and (13)C resonance assignments of the H. pylori ACP are reported using double- and triple-resonance techniques. About 97% of all of the (1)HN, (15)N, (13)CO, (13)Calpha, and (13)Cbeta resonances that cover 76 of the 78 non-proline residues are clarified through sequential- and specific- assignments. In addition, four helical regions were clearly identified on the basis of the resonance assignments.  相似文献   

8.
Graphical interpretation of Boolean operators for protein NMR assignments   总被引:1,自引:1,他引:0  
We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal.  相似文献   

9.
Two multi-dimensional heteronuclear NMR experiments are described for assigning the resonances in uniformly 15N- and 13C-labeled proteins. In one experiment (HCNH-TOCSY), the amide nitrogen and proton are correlated to the side-chain protons and carbons of the same and preceding residue. In a second triple resonance experiment (HC(CO)NH-TOCSY), the amide nitrogen and proton of one residue is correlated exclusively with the side-chain proton and carbon resonances of the preceding residue by transferring magnetization through the intervening carbonyl. The utility of these two experiments for making sequential resonance assignments in proteins is illustrated for [U-15N,13C]FKBP (107 residues) complexed to the immunosuppressant, ascomycin.  相似文献   

10.
Summary Two new 3D 1H-15N-13C triple-resonance experiments are presented which provide sequential cross peaks between the amide proton of one residue and the amide nitrogen of the preceding and succeeding residues or the amide proton of one residue and the amide proton of the preceding and succeeding residues, respectively. These experiments, which we term 3D-HN(CA)NNH and 3D-H(NCA)NNH, utilize an optimized magnetization transfer via the 2JNC coupling to establish the sequential assignment of backbone NH and 15N resonances. In contrast to NH-NH connectivities observable in homonuclear NOESY spectra, the assignments from the 3D-H(NCA)NNH experiment are conformation independent to a first-order approximation. Thus the assignments obtained from these experiments can be used as either confirmation of assignments obtained from a conventional homonuclear approach or as an initial step in the analysis of backbone resonances according to Ikura et al. (1990) [Biochemistry, 29, 4659–4667]. Both techniques were applied to uniformly 15N- and 13C-labelled ribonuclease T1.  相似文献   

11.
Multidimensional, multinuclear NMR has the potential to elucidate the mechanisms of allostery and cooperativity in multimeric proteins under near-physiological conditions. However, NMR studies of proteins made up of non-equivalent subunits face the problem of severe resonance overlap, which can prevent the unambiguous assignment of resonances, a necessary step in interpreting the spectra. We report the application of a chain-selective labeling technique, in which one type of subunit is labeled at a time, to carbonmonoxy-hemoglobin A (HbCO A). This labeling method can be used to extend previous resonance assignments of key amino acid residues, which are important to the physiological function of hemoglobin. Among these amino acid residues are the surface histidyls, which account for the majority of the Bohr effect. In the present work, we report the results of two-dimensional heteronuclear multiple quantum coherence (HMQC) experiments performed on recombinant (15)N-labeled HbCO A. In addition to the C2-proton (H epsilon(1)) chemical shifts, these spectra also reveal the corresponding C4-proton (H delta(2)) resonances, correlated with the N epsilon(2) and N delta(1) chemical shifts of all 13 surface histidines per alpha beta dimer. The HMQC spectrum also allows the assignment of the H delta(1), H epsilon(1), and N epsilon(1) resonances of all three tryptophan residues per alpha beta dimer in HbCO A. These results indicate that heteronuclear NMR, used with chain-selective isotopic labeling, can provide resonance assignments of key regions in large, multimeric proteins, suggesting an approach to elucidating the solution structure of hemoglobin, a protein with molecular weight 64.5 kDa.  相似文献   

12.
The assignment of the 1H, 15N, 13CO, and 13C resonances of recombinant human interleukin-4 (IL-4), a protein of 133 residues and molecular mass of 15.4 kDa, is presented based on a series of 11 three-dimensional (3D) double- and triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N/13C-labeled IL-4 with an isotope incorporation of greater than 95% for the protein expressed in yeast. Five independent sequential connectivity pathways via one-, two-, and three-bond heteronuclear J couplings are exploited to obtain unambiguous sequential assignments. Specifically, CO(i)-N(i + 1),NH(i + 1) correlations are observed in the HNCO experiment, the C alpha H(i), C alpha (i)-N(i + 1) correlations in the HCA(CO)N experiment, the C alpha(i)-N(i + 1),NH(i + 1) correlations in the HNCA and HN(CO)CA experiments, the C alpha H(i)-N(i + 1),NH(i + 1) correlations in the H(CA)NH and HN(CO)HB experiments, and the C beta H(i)-N(i + 1),NH(i + 1) correlations in the HN(CO)HB experiments. The backbone intraresidue C alpha H(i)-15N(i)-NH(i) correlations are provided by the 15N-edited Hartmann-Hahn (HOHAHA) and H(CA)NH experiments, the C beta H(i)-15N(i)-NH(i) correlations by the 15N-edited HOHAHA and HNHB experiments, the 13C alpha(i)-15N(i)-NH(i) correlations by the HNCA experiment, and the C alpha H(i)-13C alpha(i)-13CO(i) correlations by the HCACO experiment. Aliphatic side-chain spin systems are assigned by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and total correlated (HCCH-TOCSY) spectroscopy. Because of the high resolution afforded by these experiments, as well as the availability of multiple sequential connectivity pathways, ambiguities associated with the limited chemical shift dispersion associated with helical proteins are readily resolved. Further, in the majority of cases (88%), four or more sequential correlations are observed between successive residues. Consequently, the interpretation of these experiments readily lends itself to semiautomated analysis which significantly simplifies and speeds up the assignment process. The assignments presented in this paper provide the essential basis for studies aimed at determining the high-resolution three-dimensional structure of IL-4 in solution.  相似文献   

13.
A triple-resonance pulse scheme is described which records15N, NH correlations of residues that immediately follow amethyl-containing amino acid. The experiment makes use of a15N, 13C and fractionally deuterated proteinsample and selects for CH2D methyl types. The experiment isthus useful in the early stages of the sequential assignment process as wellas for the confirmation of backbone 15N, NH chemical shiftassignments at later stages of data analysis. A simple modification of thesequence also allows the measurement of methyl side-chain dynamics. This isparticularly useful for studying side-chain dynamic properties in partiallyunfolded and unfolded proteins where the resolution of aliphatic carbon andproton chemical shifts is limited compared to that of amide nitrogens.  相似文献   

14.
Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([1H,15N]-SE-PISEMA-PDSD). The incorporation of 2D 15N/15N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.  相似文献   

15.
16.
The use of uniform 13C,15N labeling in the NMR spectroscopic study of RNA structures hasgreatly facilitated the assignment process in small RNA oligonucleotides. For ribose spinsystem assignments, exploitation of these labels has followed previously developed methodsfor the study of proteins. However, for sequential assignment of the exchangeable andnonexchangeable protons of the nucleotides, it has been necessary to develop a variety of newNMR experiments. Even these are of limited utility in the unambiguous assignment of largerRNAs due to the short carbon relaxation times and extensive spectral overlap for all nuclei.These problems can largely be overcome by the additional use of base-type selectively13C,15N-labeled RNA in combination with a judicious use of related RNAs with basesubstitutions. We report the application of this approach to a 36-nucleotide ATP-binding RNAaptamer in complex with AMP. Complete sequential 1H assignments, as well as the majorityof 13C and 15N assignments, were obtained.  相似文献   

17.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

18.
Mars - robust automatic backbone assignment of proteins   总被引:1,自引:0,他引:1  
MARS a program for robust automatic backbone assignment of (13)C/(15)N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only (13)C(alpha)/(13)C(beta) connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment.  相似文献   

19.
Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose methodologies for assigning the1H resonances based on 2D, homonuclear1H NMR experiments. These include the sequential assignment strategy and the main chain directed strategy. These basic strategies have been extended to include newer 3D homonuclear experiments and 2D and 3D heteronuclear resolved and edited methods. Most recently a novel, conceptually new approach to the problem has been introduced that relies on heteronuclear, multidimensional so-called triple resonance experiments for both backbone and sidechain resonance assignments in proteins. This article reviews the evolution of strategies for the assignment of resonances of proteins.  相似文献   

20.
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号