首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase (SOD) in exercised mice. In the first part of the study, 48 male weanling mice were randomly divided into three groups. They were fed a zinc-deficient diet containing 1.6 mg/kg zinc or were pair-fed or fed ad libitum a zinc-adequate diet supplemented with 50 mg/kg zinc. Half of each group received an exercise training program that consisted of swimming for 60 min per day in deionized water. The diets and exercise program persisted for 6 weeks. In the second part of the study, 64 mice were fed zinc-deficient diets for 6 weeks, and then one group was fed the zinc-deficient diet for an additional 3 weeks, and the other three groups were fed diets supplemented with 5, 50, and 500 mg/kg zinc, respectively. Half of each group also received the exercise program. Both blood and liver samples were examined. Free radicals in liver were directly detected by electron spin resonance techniques and the extent of lipid peroxidation was indicated by malonic dialdehyde (MDA). Both CuZn-SOD and Mn-SOD were measured. The results showed that exercise training increased the metabolism of zinc, and zinc deficiency induced an increased free radical generation and lipid peroxidation and a decreased hepatic CuZn-SOD activity in exercised mice. Furthermore, although exercise training had no effect on the level of free radicals in zinc-adequate mice, it could increase the hepatic mitochondrial MDA formation further in zinc-deficient animals and zinc deficiency would eliminate the exercise-induced increase in SOD activities which existed in zinc-adequate mice. A total of 50 mg/kg zinc supplemented in the diet was adequate to correct the zinc-deficient status in exercised mice while 5 mg/kg zinc had a satisfactory effect on the recovery of only sedentary zinc-deficient mice. However, 500 mg/kg zinc had a harmful effect on both sedentary and exercised zinc-deficient animals.  相似文献   

2.
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.  相似文献   

3.
Recent studies with rats force-fed zinc-deficient diets containing various types of fat failed to demonstrate a role of zinc in desaturation of linoleic acid. The present study was conducted to investigate the effect of zinc deficiency on desaturation of linoleic acid in rats that were initially force-fed fat-free diets to stimulate activity of desaturases. Therefore, rats were fed zinc-adequate and zinc-deficient fat-free diets for 6 d. After that period, the groups were divided and half of the rats continued feeding the fat-free diet for another 3.5 d whereas the other half was switched to a fat diet by supplementing the fat-free diet with 5% safflower oil. In order to assess desaturation of linoleic acid, fatty acid compositions of liver phosphatidylcholine, ethanolamine, and-serine were considered, particularly levels of individual (n-6) polyunsaturated fatty acids (PUFA). Levels of total and individual (n-6) PUFA were similar in zinc-adequate and zinc-deficient rats fed the fat-free diet throughout the experiment. Addition of 5% safflower oil increased levels of total and individual (n-6) PUFA in both zinc-adequate and zinc-deficient rats. However, total (n-6) PUFA in all types of phospholipids were higher in zinc-adequate rats than in zinc-deficient rats. Additionally, in zinc-deficient rats there were changes of (n-6) PUFA levels typical for impaired Δ5 and Δ6 desaturation: linoleic acid and dihomo-γ-linolenic acid were elevated; arachidonic acid, docosatetraenoic acid, and docosapentaenoic were lowered by zinc deficiency. Therefore, the study shows that zinc deficiency impairs desaturation of linoleic acid in rats force-fed fat-free diets and therefore supports results from former convential zinc deficiency experiments suggesting a role of zinc for desaturation of linoleic acid.  相似文献   

4.
Erythrocyte ghosts, prepared from rats fed zinc-deficient diets, were analyzed for the mobility of membrane proteins by electron spin resonance spectroscopy of the sulfhydryl-binding spin probe, 4-maleimido-2,2,6,6-tetramethylpiperidine-N-oxyl. Compared with erythrocyte membranes from rats fed zinc-adequate diets ad libitum or pair-fed, erythrocyte membranes from zinc-deficient rats had a significantly increased ratio of weakly immobilized to strongly immobilized probe-binding proteins. This suggests that dietary zinc deficiency causes a conformational change in erythrocyte membrane proteins. Dietary zinc deficiency did not significantly affect N-ethylmaleimide (NEM)-induced thermal sensitivity or NEM-induced mechanical fragility in rat erythrocytes; however, the addition of zinc in vitro to red cells significantly inhibits NEM-induced mechanical fragility.  相似文献   

5.
The activities of ornithine transcarbamylase, arginine synthetase and arginase in the liver of rats receiving basal diets containing 25% casein supplemented respectively with arginine, aspartic acid, glutamic acid, glycine, a mixture of arginine, aspartic acid and glutamic acid, egg albumin, casein, wheat gluten and gelatin have been determined.

These urea cycle enzymes in rats receiving diets supplemented with the various nitrogen sources were generally increased, but the increments were due to the increase of the ingested amount of nitrogen, and not the specific effect of the individual amino acids or proteins. The excretion of urinary urea in general was increased proportionally with the elevations of these enzyme activities, independent of the nature of the dietary nitrogen.  相似文献   

6.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

7.
In three fully crossed, three-way, two-by-two-by-four experiments, male weanling Long-Evans rats were fed a basal diet supplemented with vanadium (ammonium metavanadate)-at 0 and 1 μg/g, cystine at 3.0 and 8.5 mg/g, and iron (ferric sulfate) at 0 (Expts. 1 and 2) or 5 (Expt. 3), 15, 100, and 500 μg/g. After 6 wk, a relationship between vanadium and iron that was influenced by dietary cystine was found. The interaction among vanadium, iron, and cystine was demonstrated best by the hematocrit and hemoglobin findings, which were similar. In all Expts., hematocrits were depressed in rats fed the two lower levels of iron. In Expts. 2 and 3, vanadium deprivation exacerbated the depression of hematocrits in rats fed 15 μg iron and 3.0 mg cystine/g diet. In Expt. 1, the effect was similar, but less marked. On the other hand, in Expts. 1 and 3 when supplemental cystine was 8.5 mg/g, vanadium deprivation did not exacerbate, but tended to alleviate the depression of hematocrits in rats fed 15 μg iron/g diet. When dietary iron was 15 μg/g in Expt. 2, the exacerbation of the depression of hematocrits by vanadium deprivation was much less in rats fed 8.5 rather than 3.0 mg cystine/g diet. Dietary vanadium had little effect on depressed hematopoiesis in severely iron-deficient rats. The findings indicated that vanadium neither substitutes for iron at some metabolic site, nor stimulates iron absorption; but has a positive influence on the utilization of iron after absorption.  相似文献   

8.
Zinc deficiency and peripheral neuropathy in chicks.   总被引:1,自引:0,他引:1  
Zinc-deficient chicks develop an arthritic-like neuromuscular disorder. They walk with a stilted gait and tend to remain in a squat position, bearing little weight on the legs. The purpose of this study was to determine the basis of the syndrome by making electrophysiologic measurements of nerve function. Chicks were fed low zinc (6 mg/kg) and zinc-adequate (50 mg/kg) diets, the latter ad libitum and pair-fed. At the end of 3 weeks, sciatic nerve function was determined in vivo by use of an electrodiagnostic system. Motor nerve conduction velocity was significantly lower in chicks fed the low zinc than in those fed the zinc-adequate diet. Zinc repletion of the 2-week depleted chicks was achieved by feeding the adequate diet for 2 weeks. Repletion for this period cured clinical signs and restored nerve conduction velocity to normal, but reversal did not occur within 1 week. It was concluded that the abnormal posture and locomotion of zinc deficiency are associated with peripheral neuropathy.  相似文献   

9.
Rats weighing 100 g were made chronically uremic by partial left renal artery ligation and contralateral nephrectomy. Rats with urea clearances below 0.30 ml/min and sham-operated controls were pair-fed arginine-free diets, diets containing normal amounts of arginine or diets with high levels of arginine. After 4 to 8 weeks, rats were killed and plasma levels of arginine, ornithine and lysine were measured. In addition, activities of various urea cycle enzymes in liver and kidney and renal transamidinase were determined. Plasma amino acid levels and enzyme activities of the urea cycle remained constant in control rats fed diets differing in arginine content. However, renal transamidinase activity was elevated in control rats fed arginine-free diets. In plasma of uremic as compared with control rats, arginine levels varied with the arginine intake, and lysine levels were elevated when arginine supplements were fed. With all diets, plasma ornithine remained constant in uremic rats at slightly but not significantly increased levels. Hepatic carbamoyl phosphate synthetase activity and renal arginine synthetase activity were reduced in uremic as compared to control rats. Renal transamidinase activity, expressed per g of kidney, was elevated in uremic rats with all diets except arginine-free. When amino acid diets were fed, hepatic arginase activity was higher in uremic rats and this increase was enhanced by arginine-free diets. Other enzyme activities in uremic rats were not affected by the amount of arginine in the diet.  相似文献   

10.
Erythrocyte ghosts, prepared from the blood of rats fed zinc-deficient diets, were evaluated for membrane fluidity and surface sialic acid properties using spin-labeled probes and electron spin resonance (ESR) spectroscopy. These physical parameters of the erythrocyte ghosts from the zinc-deficient group were compared to those for erythrocyte ghosts obtained from ad libitum and pair fed controls consuming zinc-adequate diets. As the animals became progressively zinc deficient, the erythrocyte ghost membranes became more fluid than those from the control groups. In addition, the apparent rotational correlation time of Tempamine spin probes on surface sialic acid residues was smaller for the zinc deficient group, indicative of an increased rotational mobility of the spin label. These results suggest that zinc deficiency can have pronounced effects on the physical state of membrane bilayer lipids and cell surface carbohydrates and supports the view that many of the pathological signs of zinc deficiency are due to a general membrane defect.  相似文献   

11.
An experiment was performed to determine the effect of diethyl maleate (DEM), and in vivo depletor of glutathione, on the response of male and female rats to arsenic deprivation. A 2×2×2 factorially arranged experiment used groups of six weanling Sprague-Dawley rats. Dietary variables were arsenic at 0 or 0.5 μg/g and DEM at 0 or 0.25%; the third variable was gender. Animals were fed for 10 wk a casein-ground corn based diet that contained amounts of calcium, phosphorus, and magnesium similar to the AIN-76 diet. DEM supplementation increased blood arsenic in both male and female rats; female rats had the greatest amount of arsenic in whole blood. Although female rats in general had a lower concentration of glutathione in liver, those fed no supplemental DEM, regardless of their arsenic status, had the lowest amounts. Compared to males, female rats had a lower activity of liver glutathione S-transferase (GST). Arsenic deprivation decreased, and DEM supplementation increased liver GST activity in both male and female rats. Lung GST activity was also increased by DEM supplementation in male, but not female, rats. The most striking finding of the study was that compared to males, females had extremely elevated kidney calcium concentrations, and that the elevation was exacerbated by arsenic deprivation. DEM supplementation also exacerbated the accumulation of calcium in the kidney of the female rats. The response of the rat to both DEM and arsenic was, for many variables, dependent on gender. This gender dependence may be explained by the differences in methionine metabolism between male and female rats. Thus, arsenic deprivation apparently can manifest itself differently depending on gender.  相似文献   

12.
Weanling rats were given diets deficient in or supplemented with zinc. Within a few weeks there were increases in the weight of the adrenal glands and in the concentration of cholesterol and 11-hydroxycorticosteroids in the adrenal glands of the zinc deficient animals. The decrease in cholesterol concentration due to ACTH administration was greater in zinc-deficient than in supplemented rats. After four weeks on the zinc-deficient diet rats had smaller thymus glands than zinc-supplemented rats but zinc-deficient diets had no such effect on adrenalectomised rats. The addition of 2 mg zinc/ml drinking water had no effect on adrenal weight or thymus weight but increased plasma 11-hydroxysteroids after 30 days. The possible connection between zinc intake and resistance to injury and disease is discussed.  相似文献   

13.
Changes in the time course of the urinary excretion of creatinine, creatine and urea, and the activities of kidney transamidinase and liver urea-cycle enzymes were investigated in rats fasted and fed on a 10% casein diet and 10% casein diets supplemented with 10% glycine and/or 1.4% arginine.

The urinary total-creatinine of the fasted rats increased extremely during fasting for 7 days, while that of the animals given the 10% casein diet supplemented with glycine and arginine rose exceedingly on the 3rd day and thereafter no significant change was observed. Most of the increase of total-creatinine could be accounted for by the increase of creatine. The activity of kidney transamidinase in the fasted rats decreased in the 3rd day and thereafter kept nearly constant. The transamidinase activity of rats fed on the 10% casein diet after giving a protein-free diet for 5 days increased in the 3rd day. An inverse relation was observed between the urinary creatine and the transamidinase activity. The urinary urea increased in the rats fasted or fed on the 10% casein diets with the supplement of glycine and/or arginine. In fasting, the activities of liver urea-cycle enzymes, except arginase, had a tendency of increasing with the lapse of time. The arginase activity remained more or less constant. The reason of the extreme increase of urinary creatine during starvation was discussed.  相似文献   

14.
Both arginine and silicon affect collagen formation and bone mineralization. Thus, an experiment was designed to determine if dietary arginine would alter the effect of dietary silicon on bone mineralization and vice versa. Male weanling Sprague-Dawley rats were assigned to groups of 12 in a 2×2 factorially arranged experiment. Supplemented to a ground corn/casein basal diet containing 2.3 μg Si/g and adequate arginine were silicon as sodium metasilicate at 0 or 35 μg/g diet and arginine at 0 or 5 mg/g diet. The rats were fed ad libitum deionized water and their respective diets for 8 wk. Body weight, liver weight/body weight ratio, and plasma silicon were decreased, and plasma alkaline phosphatase activity was increased by silicon deprivation. Silicon deprivation also decreased femoral calcium, copper, potassium, and zinc concentrations, but increased the femoral manganese concentration. Arginine supplementation decreased femoral molybdenum concentration but increased the femoral manganese concentration. Vertebral concentrations of phosphorus, sodium, potassium, copper, manganese, and zinc were decreased by silicon deprivation. Arginine supplementation increased vertebral concentrations of sodium, potassium, manganese, zinc, and iron. The arginine effects were more marked in the silicon-deprived animals, especially in the vertebra. Germanium concentrations of the femur and vertebra were affected by an interaction between silicon and arginine; the concentrations were decreased by silicon deprivation in those animals not fed supplemental arginine. The change in germanium is consistent with a previous finding by us suggesting that this element may be physiologically important, especially as related to bone DNA concentrations. The femoral and vertebral mineral findings support the contention that silicon has a physiological role in bone formation and that arginine intake can affect that role. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

15.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

16.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

17.
In three fully crossed, factorially arranged, completely randomized experiments, female weanling rats were fed a basal diet (containing about 10 ng of nickel and 2.3 μg of iron/g) supplemented with graded levels of nickel and iron. Iron was supplemented to the diet in experiment 1 at levels of 0, 25, 50, and 100 μg/g as a mixture of 40% FeSO4·nH2O and 60% Fe2(SO4)3·nH2O; in experiment 2 at levels of 0, 12.5, 25, 50, and 100 μg/g as Fe2(SO4)3·nH2O; in experiment 3 at levels of 0, 25, and 50 μg/g as either the mixture of ferric-ferrous sulfates, or as ferric sulfate only. Nickel as NiCl2·3H2O was supplemented to the diet in experiment 1 at levels of 0, 5, and 50 μg/g; in experiment 2 at levels of 0 and 50 μg/g; and in experiment 3 at levels of 0 and 5 μg/g. Regardless of dietary nickel, rats fed no supplemental iron exhibited depressed iron content and elevated copper, manganese, and zinc contents in the liver. Nickel and iron did not interact to affect iron, manganese, and zinc in liver. Liver copper was inconsistently affected by an interaction between nickel and iron. Nickel deprivation apparently accentuated the elevation of the copper level in livers of severely iron-deficient rats. Experiment 3 showed that the form of dietary iron altered the effect of nickel deprivation on the iron content of the liver. When only ferric sulfate was supplemented to the diet, liver iron content was depressed in nickel-deprived rats. On the other hand, when the ferric-ferrous mixture was supplemented to the diet, nickel deprivation apparently elevated the iron content in the liver. The findings support the views that (1) parameters that are affected by an interaction between nickel and iron are limited in factorially arranged experiments, and (2) the form and level of dietary iron markedly influence the effect of nickel deprivation in the rat.  相似文献   

18.
Feeding experiments with juvenile kuruma shrimp (Marsupenaeus japonicus) were conducted to understand the effects of supplemental levels of crystalline arginine hydrochloride on the growth and assimilation of arginine. In experiment 1 the juvenile shrimp were maintained on diets with and without arginine supplements. The addition of 3.0% arginine to a casein-based diet was slightly effective in improving the growth of the juveniles. In experiment 2, tracer experiments using [14C] arginine were conducted to clarify the ingestion and assimilation of arginine, 9 and 24 h after feeding, at different levels of supplemental arginine. Tracer experiments showed that the leaching rate of arginine 1 h after feeding ranged from 16 to 26% in the diets with different levels (0, 0.1, 1.5, 3.0 and 6.0%) of supplemental arginine; that is, 74-84% of the given arginine was actually ingested by the shrimp fed the diets. However, with increasing levels of supplemental arginine the incorporation rate of arginine into the whole body decreased and the utilization of absorbed arginine for body protein synthesis was reduced, whereas the excretion of absorbed arginine was increased. Thus, the absorbed arginine was not effectively utilized for body protein synthesis when large amounts of arginine were supplemented to the diets.  相似文献   

19.
The role of dietary arginine in affecting nitrogen utilisation and excretion was studied in juvenile European sea bass (Dicentrarchus labrax) fed for 72 days with diets differing in protein sources (plant protein-based (PM) and fish-meal-based (FM)). Fish growth performance and nitrogen utilisation revealed that dietary Arg surplus was beneficial only in PM diets. Dietary Arg level significantly affected postprandial plasma urea concentrations. Hepatic arginase activity increased (P<0.05) in response to dietary Arg surplus in fish fed plant protein diets; conversely ornithine transcarbamylase activity was very low and inversely related to arginine intake. No hepatic carbamoyl phosphate synthetase III activity was detected. Dietary arginine levels did not affect glutamate dehydrogenase activity. A strong linear relationship was found between liver arginase activity and daily urea-N excretion. Dietary Arg excess reduced the proportion of total ammonia nitrogen excreted and increased the contribution of urea-N over the total N excretion irrespective of dietary protein source. Plasma and excretion data combined with enzyme activities suggest that dietary Arg degradation via hepatic arginase is a major pathway for ureagenesis and that ornithine-urea cycle is not completely functional in juvenile sea bass liver.  相似文献   

20.
Dipeptidyl carboxypeptidase (DC) is highly active in the testis and epididymis of rats and increases during pubertal development. Zinc deficiency during this period depresses the activity of DC in the testis. Experiments were conducted to determine the effects of zinc deficiency on epididymal DC activity. Comparisons were made between changes seen in this organ and those observed in testis. Three dietary treatments were used; zinc-deficient, fed ad libitum; zinc-adequate, pair-fed to the deficient group; and zinc-adequate, fed ad libitum. Results confirmed that testicular DC is affected negatively by zinc deficiency. DC activity was also lower in the epididymis of zinc-deficient rats than in control rats. These effects apparently were specific relative to changes in activity of other enzymes. Alkaline phosphatase activity in the epididymis was not affected by zinc deficiency and it was depressed in the testis. Gamma-glytamyl transferase activity in the epididymis was not affected by zinc deficiency but it was elevated in the testis. The results of this study suggest that part of the effect of zinc deficiency on sexual maturity in the male rat may be caused by reduced activity of DC. This enzyme is thought to be required for maturation and development of sperm cells. Presented in part at the 1988 Joint Meeting of the North Dakota and South Dakota Academies of Science, Bismarck, ND, April 30, 1988. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号