首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

2.
Wheat (Triticum aestivum L.) is the largest cereal crop grown in Western Canada where drought during late vegetative and seed filling stages affects plant development and yield. To identify new physiochemical markers associated with drought tolerance, epidermal characteristics of the flag leaf of two wheat cultivars with contrasting drought tolerance were investigated. The drought resistant ‘Stettler’ had a lower drought susceptibility index, greater harvest index and water‐use efficiency than the susceptible ‘Superb’. Furthermore, flag leaf width, relative water content and leaf roll were significantly greater in Stettler than in Superb at moderate drought stress (MdS). Visible differences in epicuticular wax density on the adaxial flag leaf surfaces and larger bulliform cells were identified in Stettler as opposed to Superb. Mid‐infrared attenuated total internal reflectance spectra revealed that Stettler flag leaves had increased asymmetric and symmetric CH2 but reduced carbonyl esters on its adaxial leaf surface compared to Superb under MdS. X‐ray fluorescence spectra revealed a significant increase in total flag leaf Zn concentrations in Stettler in response to MdS. Such information on the microstructural and chemical features of flag leaf may have potential as markers for drought tolerance and thereby accelerate the selection and release of more drought‐resistant cultivars.  相似文献   

3.
采用子母桶栽土培法模拟冬小麦抽穗后不同的水分胁迫状态,研究了氮肥后移对冬小麦光合特性及产量的影响.设置3个氮肥处理,分别为N1(基肥∶拔节肥∶开花肥=10∶0∶0)、N2(6∶4∶0)和N3(4∶3∶3),模拟冬小麦抽穗后2种水分胁迫(渍水胁迫、干旱胁迫),设正常供水为对照.结果表明:相同供水条件下,N2和N3处理较N1处理显著提高冬小麦灌浆期旗叶的SPAD和光合速率,确保了收获时较高的穗数、穗粒数和地上部分生物量;氮肥后移处理显著提高了冬小麦的耗水量,但其籽粒产量和水分利用效率也显著提高.相同氮肥条件下,干旱胁迫和渍水胁迫处理较正常供水显著降低了冬小麦开花期和灌浆期旗叶的光合速率、千粒重、穗粒数和产量.与正常供水相比,各氮肥条件下干旱胁迫和渍水胁迫处理花后旗叶光合速率及籽粒产量的减小幅度均表现为N1>N2>N3.表明氮肥后移通过提高旗叶SPAD、减缓花后旗叶光合速率的下降幅度、增加地上部分干物质积累量,调控产量及其构成要素,以减轻逆境灾害(干旱和渍水胁迫)对产量的影响.  相似文献   

4.
5.
6.
7.
We investigated net photosynthetic rate (PN) of ear and two uppermost (flag and penultimate) leaves of wheat cultivars Hongmangmai (drought resistant) and Haruhikari (drought sensitive) during post-anthesis under irrigated and non-irrigated field conditions. The PNof ear and flag leaf were significantly higher and less affected by drought in Hongmangmai than in Haruhikari. The rate of reduction in stomatal conductance (gs) was similar for the two cultivars, but intercellular CO2concentration (Ci) in the flag leaf of Hongmangmai was lower than that of Haruhikari in non-irrigated treatment. No differences were observed in leaf water potential (ψ1) and osmotic adjustment of the flag leaf of the cultivars. These results imply that differences in photosynthetic inhibition on the flag leaf at low leaf ψ1between the cultivars were primarily due to non-stomatal effects. Hence the main physiological factor associated with yield stability of Hongmangmai under drought stress may be attributed to the capacity for chloroplast activity in the flag leaf, which apparently allows sustained PNof flag leaf during grain filling under drought stress. The higher PNof ear in Hongmangmai under drought could also be related to its drought resistance.  相似文献   

8.
Improving wheat grain yield plays a significant role in ensuring global food security. Wheat production could be increased by the genetic improvement of wheat genotypes where delayed senescence with enhanced post-anthesis capacity and staygreen traits could have an important role. In this study, chlorophyll a fluorescence (ChlF) rise kinetics from the early until late senescence of flag leaves, grain yield and other agro-morphological characteristics were compared for three winter wheat advanced lines (Osk.4.312/10-18, Osk.4.330/6-18 and Osk.4.354/12-18) under natural drought conditions. The differences between lines were observed when considering the heading date which was 1 and 4 days earlier for the line Osk.4.354/12-18, than lines Osk.4.312/10-18 and Osk.4.330/6-18, respectively. Furthermore, line Osk.4.354/12-18 had the highest test weight (kg hl−1), while line Osk.4.330/6-18 showed a tendency of decreased grain yield, compared to the other two lines. Analysis of ChlF transients and several JIP-test parameters indicated that all three lines had a generally similar course of changes in the photosynthetic performance of flag leaves during senescence under drought conditions. However, at the point when a decrease in photosynthetic performance was initiated, it was slightly less intensive in line Osk.4.354/12-18 accompanied by longer preservation of functionality and connectivity of PSII units, than in the other two lines, which contributed to its better agronomical performance. These results indicated that even delicate variations in the functioning of the photosynthetic apparatus of the flag leaf during grain filling were agronomically important, especially when plants were exposed to drought stress, and could be used to differentiate otherwise similar wheat genotypes. Even small genotype-specific differences in the photosynthetic performance of senescing flag leaves, along with earlier heading dates, could assist in the selection of genotypes with a better ability to cope with unfavourable environmental conditions.  相似文献   

9.
Understanding the molecular mechanisms regulating rice’s response to drought stress is important for cereal crop development. We investigated the physiological and gene expression responses of three drought-tolerant and two drought-sensitive unrelated rice cultivars at the reproductive stage. Leaf water loss and leaf rolling tests distinguished these two groups from each other. Both 7 and 14 days of drought stress affected most of the tested agronomic traits including grain yield, and the effects were stronger in the drought-sensitive cultivars. Fourteen days of drought stress severely reduced grain yield in the sensitive cultivars. Expression levels of 50 genes previously published were examined in panicles. Of these, 25 genes were expressed in panicles and could be classified into 6 groups. LOC_Os02g51350, a Kelch domain-containing F-box gene, was selected for further studies including expression analysis in panicles during the 14-day drought stress, domain analysis, and analysis of cis-acting elements in the promoters. All three drought-resistant cultivars possessed the F-box domain, which was absent in the two drought-sensitive cultivars. In addition, drought-related ABRE and DRE/CRT cis-acting elements were more abundant in Os02g51350 promoters of cultivars with good grain yield under drought stress than in promoters of cultivars with severe yield reduction. Our results suggest that the F-box version of Os02g51350 is important for maintenance of grain yield under drought.  相似文献   

10.
高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响   总被引:34,自引:0,他引:34  
以杂交籼稻特优559为材料,探讨了高温胁迫对水稻灌浆期剑叶中有关生理特性和籽粒灌浆速率的影响.结果表明:高温胁迫加速了剑叶叶绿素的丧失,使SOD活性明显降低,质膜透性和MDA含量明显增加,脯氨酸、AsA、GSH、可溶性蛋白质以及可溶性糖含量明显降低,籽粒灌浆速率和籽粒重下降.高温使灌浆期水稻叶片衰老加速、光合能力下降是其导致灌浆速率、结实率、粒重和籽粒产量降低的主要生理原因.  相似文献   

11.
12.
This review concerns ear photosynthesis and its contribution to grain filling in C3 cereals. Ear photosynthesis is quantitatively important to grain filling, particularly in dry areas where source (i.e., assimilate) limitations can occur. Compared to the flag leaf, ear photosynthesis exhibits higher water stress tolerance. Several factors could be involved in the ear's “drought tolerance.” First, although degree of C4 metabolism in ear parts has been reported, current evidence supports only typical C3 metabolism. Second, recycling of respired CO2 (i.e., refixation) could have considerable impact on final crop yield by preventing loss of CO2. Because refixation of CO2 is independent of atmospheric conditions, water use efficiency (measured as total ear photosynthesis divided by transpiration) could be higher in the ear than in the flag leaf. Moreover, ear parts (in particular awns) show higher relative water content and better osmotic adjustment under water stress compared to the flag leaf. This capacity, in addition to persistence of photosynthetic components under drought (delayed senescence), might help the ear to continue to fix CO2 late in the grain filling period.  相似文献   

13.
Field drought studies were performed in order to assess oxidative stress, proteolytic activity and yield loss under natural stress conditions. Flag leaves of two drought-tolerant (Yantar and Zlatitsa) and two drought-sensitive (Miziya and Dobrudjanka) winter wheat varieties were analyzed. Stress intensity was assessed by relative electrolyte leakage and proline accumulation. Senescence progression was followed by loss of chlorophyll and protein. Lipid peroxidation, H2O2 content, activities of superoxide dismutase (SOD), catalase (CAT), and non-specific peroxidase (GPX) isoforms, as well as proteolytic activities were analyzed from heading throughout grain filling. Weakening of membrane integrity and oxidative damage to lipids were more pronounced in the sensitive varieties under field drought. The activities of Fe- and Cu/Zn SOD isoforms decreased in the controls, but remained high in drought-treated plants. The activities of MnSOD isoforms and CAT were enhanced towards grain filling, especially in the sensitive varieties under drought. GPX activities were rised under drought but progressively diminished. Accelerated senescence under field drought was linked to higher proteolytic activity with variety specific differences in the protease response, but without a clear correlation to drought resistance or sensitivity. Field drought led to higher oxidative stress more pronounced for drought sensitive varieties, especially during the grain filling period.  相似文献   

14.
We investigated net photosynthetic rate (PN) of ear and two uppermost (flag and penultimate) leaves of wheat cultivars Hongmangmai (drought resistant) and Haruhikari (drought sensitive) during post-anthesis under irrigated and non-irrigated field conditions. The PNof ear and flag leaf were significantly higher and less affected by drought in Hongmangmai than in Haruhikari. The rate of reduction in stomatal conductance (gs) was similar for the two cultivars, but intercellular CO2concentration (Ci) in the flag leaf of Hongmangmai was lower than that of Haruhikari in non-irrigated treatment. No differences were observed in leaf water potential (1) and osmotic adjustment of the flag leaf of the cultivars. These results imply that differences in photosynthetic inhibition on the flag leaf at low leaf 1between the cultivars were primarily due to non-stomatal effects. Hence the main physiological factor associated with yield stability of Hongmangmai under drought stress may be attributed to the capacity for chloroplast activity in the flag leaf, which apparently allows sustained PNof flag leaf during grain filling under drought stress. The higher PNof ear in Hongmangmai under drought could also be related to its drought resistance.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

15.
In West-Europe, intensive cereal management uses plant growth regulators (PGRs) especially for wheat. A green-house experiment compared the effects of two PGRs on flag leaf characteristics and yield of winter wheat. Chlormequat chloride + choline chloride (CCC) and chlormequat chloride + choline chloride + imazaquin (CCC+I) were applied to winter wheat at growth stage 5 (Feekes Large scale). CCC and CCC+I significantly increased flag leaf surface area at anthesis. Both treatments also enhanced chlorophyll content of the main stem flag leaf. The grain filling period was extended with PGR application by 2 days. CCC and CCC+I significantly increased net CO2 assimilation rates during the flag leaf life. No effects of PGR spraying were observed on the pattern of 14C labelled assimilate distribution. Increased grain yield was due to the increase in average grain weight. The results indicate that PGR treatments increased flag leaf contribution to grain filling. The addition of imazaquin (I) to chlormequat (CCC) improved the effects of CCC.  相似文献   

16.
In order to provide information for the development of molecular selection markers for drought tolerance improvement, the methods of prometric analysis, quantitative real-time PCR and field evaluation were employed for the identification of the differential expression of candidate genes under drought stress in maize. At seventeen, twenty-four and forty-eight hours of polyethylene glycol-simulated drought stress at the seventh leaf stage, leaf samples were collected from two drought-tolerant inbred lines for prometric analysis by two-dimensional electrophoresis and peptide mass fingerprinting. Fifty-eight proteins out of more than 500 were found in response to drought stress. Three drought-induced spots 2506, 3507 and 4506 showed sequence similarity with cinnamyl alcohol dehydrogenase, cytochrome protein 96A8 and S-adenosyl-L-methionine synthase, respectively. The expression of two key enzymes to lignin biosynthesis was quantified by quantitative real-time PCR among three drought-tolerant and one drought-sensitive inbred lines under drought stress and well-watered control conditions. After a decrease at the beginning of drought stress, the expression of cinnamyl alcohol dehydrogenase and caffeateO-methyltransferase recovered at twenty-four hours of the drought stress in the three drought-tolerant lines, but not in the drought-sensitive lines. Leaf lignin content, anthesis-silking interval and grain weight per plant were investigated with six inbred lines of varying drought tolerance under drought stress and well-watered control. Drought tolerance coefficients of these three characters were calculated and the correlation coefficients among these drought tolerance coefficients were estimated. Significant difference in leaf lignin content was found among the inbred lines and in response to drought stress. Close correlations were observed between the drought tolerant coefficients for leaf lignin content and grain weight per plant, and between the drought tolerant coefficients for leaf lignin content and anthesis-silking interval. These results indicate that leaf lignin content is a useful index for evaluation of drought tolerance in maize. Molecular selection markers can be developed on the basis of differential expression of the candidate genes and applied to maize improvement for drought tolerance.  相似文献   

17.
Sánchez-Díaz  M.  García  J.L.  Antolín  M.C.  Araus  J.L. 《Photosynthetica》2002,40(3):415-421
The combined effects of water status, vapour pressure deficit (VPD), and elevated temperature from heading to maturity were studied in barley. Plants growing at high VPD, either under well-watered or water deficit conditions, had higher grain yield and grain filling rate than plants growing at low VPD. By contrast, water stress decreased grain yield and individual grain dry matter at any VPD. Water regime and to a lesser extent VPD affected 13C of plant parts sampled at mid-grain filling and maturity. The differences between treatments were maximal in mature grains, where high VPD increased 13C for both water regimes. However, the total amount of water used by the plant during grain filling did not change as response to a higher VPD whereas transpiration efficiency (TE) decreased. The net photosynthetic rate (P N) of the flag leaves decreased significantly under water stress at both VPD regimes. However, P N of the ears was higher at high VPD than at low VPD, and did not decrease as response to water stress. The higher correlation of grain yield with P N of the ear compared with that of the flag leaf support the role of ear as the main photosynthetic organ during grain filling under water deficit and high VPD. The deleterious effects of combined moderately high temperature and drought on yield were attenuated at high VPD.  相似文献   

18.
Wheat leaf non-sequential senescence at the late grain-filling stage involves the early senescence of younger flag leaves compared to that observed in older second leaves. On the other hand, sequential senescence involves leaf senescence that follows an age-related pattern, in which flag leaves are the latest to undergo senescence. The characteristics of sugar metabolism in two sequential senescence cultivars and two non-sequential senescence cultivars under both natural and drought conditions were studied to elucidate the underlying mechanism of drought tolerance in two different senescence modes. The results showed that compared to sequential senescence wheat cultivars, under natural and drought conditions, non-sequential senescence wheat cultivars showed a higher leaf net photosynthetic rate, higher soluble sugar levels in leaves, leaf sheaths, and internodes, higher leaf sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity, and higher grain SS activity, thereby suggesting that non-sequential senescence wheat cultivars had stronger source activity. Spike weight, grain weight per spike, and 100-grain weight of non-sequential senescence cultivars at maturity were significantly higher than those of sequential senescence cultivars under both natural and drought conditions. These findings indicate that the higher rate of accumulation and the higher mobilization of soluble sugar in the leaves, leaf sheaths and internodes of non-sequential senescence cultivars improve grain weight and drought tolerance. At the late grain-filling stage, drought conditions adversely affected leaf chlorophyll content, net photosynthetic rate, soluble sugar and sucrose content, SS and SPS activity, gain SS activity, and weight. This study showed that higher rates of soluble sugar accumulation in the source was one of the reasons of triggering leaf non-sequential senescence, and higher rates of soluble sugar mobilization during leaf non-sequential senescence promoted high and stable wheat yield and drought tolerance.  相似文献   

19.
研究了不同CO2浓度、不同温度和水分条件及其组合对冬小麦产量、光合及水分的影响,以阐明气候变化对冬小麦的影响.结果表明: CO2浓度升高对冬小麦光合速率没有影响,而升温和干旱均使光合速率显著下降.升高CO2浓度与温度对冬小麦旗叶水分条件没有影响,干旱胁迫下旗叶相对含水量显著降低,而升温与干旱同时发生可降低旗叶水势.气温、CO2浓度升高以及干旱胁迫共同作用下,冬小麦光合速率和旗叶水分条件显著降低,产量下降41.4%.CO2浓度升高使冬小麦增产21.2%,温度升高使产量降低12.3%,CO2浓度和温度同时升高对产量没有影响,干旱胁迫下产量下降程度更大.未来气候变化情景下,保持较高的土壤水分含量是减少气候变暖危害的重要手段.
  相似文献   

20.
研究了不同CO2浓度、不同温度和水分条件及其组合对冬小麦产量、光合及水分的影响,以阐明气候变化对冬小麦的影响.结果表明: CO2浓度升高对冬小麦光合速率没有影响,而升温和干旱均使光合速率显著下降.升高CO2浓度与温度对冬小麦旗叶水分条件没有影响,干旱胁迫下旗叶相对含水量显著降低,而升温与干旱同时发生可降低旗叶水势.气温、CO2浓度升高以及干旱胁迫共同作用下,冬小麦光合速率和旗叶水分条件显著降低,产量下降41.4%.CO2浓度升高使冬小麦增产21.2%,温度升高使产量降低12.3%,CO2浓度和温度同时升高对产量没有影响,干旱胁迫下产量下降程度更大.未来气候变化情景下,保持较高的土壤水分含量是减少气候变暖危害的重要手段.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号