首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of the cis-platinum derivative of proflavine [[PtCl(tmen)(2)][HNC(13)H(7)(NHCH(2)CH(2))(2)]](+) (PRPt) with CT-DNA is investigated by spectrophotometry and T-jump relaxation in 0.11M NaCl, pH 7.0, and 25 degrees C. The DNA-proflavine (PR) system is investigated under the same conditions. Static measurements indicate that base-dye interactions prevail and their analysis reveals that the site size for PRPt (n=2.6) is twice that found for PR (n=1.3). One relaxation effect is observed for the DNA/PR system and two effects for the DNA/PRPt system, the faster of them being similar to that of DNA/PR. The kinetics of the process are discussed in terms of the three-step sequence D+S <= => DS(I) <= => DS(II) <= => DS(III), where PR and the aromatic residues of PRPt intercalate into DNA by the same mechanism. The third step represents the penetration of platinum residues between base-pairs and is associated to remarkable enthalpy and entropy changes. Further mechanistic details are discussed.  相似文献   

2.
The binding of proflavine (D) to single stranded poly(A) (P) was investigated at pH 7.0 and 25 degrees C using T-jump, stopped-flow and spectrophotometric methods. Equilibrium measurements show that an external complex PD(I) and an internal complex PD(II) form upon reaction between P and D and that their concentrations depend on the polymer/dye concentration ratio (C(P)/C(D)). For C(P)/C(D)<2.5, cooperative formation of stacks external to polymer strands prevails (PD(I)). Equilibria and T-jump experiments, performed at I=0.1M and analyzed according to the Schwarz theory for cooperative binding, provide the values of site size (g=1), equilibrium constant for the nucleation step (K( *)=(1.4+/-0.6)x10(3)M(-1)), equilibrium constant for the growth step (K=(1.2+/-0.6)x10(5)M(-1)), cooperativity parameter (q=85) and rate constants for the growth step (k(r)=1.2x10(7)M(-1)s(-1), k(d)=1.1 x 10(2)s(-1)). Stopped-flow experiments, performed at low ionic strength (I=0.01 M), indicate that aggregation of stacked poly(A) strands do occur provided that C(P)/C(D)<2.5.  相似文献   

3.
The interactions of Poly(A).Poly(U) with the cis-platinum derivative of proflavine [{PtCl(tmen)}(2){HNC(13)H(7)(NHCH(2)CH(2))(2)}](+) (PRPt) and proflavine (PR) are investigated by spectrophotometry, spectrofluorimetry and T-jump relaxation at I=0.2M, pH 7.0, and T=25 degrees C. Base-dye interactions prevail at high RNA/dye ratio and binding isotherms analysis reveals that both dyes bind to Poly(A).Poly(U) according to the excluded site model (n=2). Only one relaxation effect is observed for the Poly(A).Poly(U)/PRPt system, whereas two effects are observed with Poly(A).Poly(U)/PR. The results agree with the sequence D+S <==> D, S <==> DS(I) <==> DS(II), where D,S is an external complex, DS(I) is a partially intercalated species, and DS(II) is the fully intercalated complex. Formation of DS(II) could be observed in the case of proflavine only. This result is interpreted by assuming that the platinum-containing residue of PRPt hinders the full intercalation of the acridine residue.  相似文献   

4.
The binding of Ru(phen)(2)dppz(2+) (dppz=dipyrido[3,2-a:2',3'-c]phenazine) to DNA was investigated at pH 7.0 and 25 degrees C using stopped-flow and spectrophotometric methods. Equilibrium measurements show that two modes of binding, whose characteristics depend on the polymer to dye ratio (C(P)/C(D)), are operative. The binding mode occurring for values of C(P)/C(D) higher than 3 exhibits positive cooperativity, which is confirmed by kinetic experiments. The reaction parameters are K=2 x 10(3)M(-1), omega=550, n=1, k(r)=(1.9+/-0.5) x 10(7)M(-1)s(-1) and k(d)=(9.5+/-2.5)x10(3)s(-1) at I=0.012 M. The results are discussed in terms of prevailing surface interaction with DNA grooves accompanied by partial intercalation of the dppz residue. The other binding mode becomes operative for C(P)/C(D)<3 and the equilibria analysis shows this is an ordinary intercalation mode (K=1.3 x 10(6) M(-1), n=1.5 at I=0.012 M and K=2 x 10(5) M(-1), n=1.2 at I=0.21 M). Similar behaviour is displayed by double-stranded poly(A).  相似文献   

5.
During iron acquisition by the cell, complete homodimeric transferrin receptor 1 in an unknown state (R1) binds iron-loaded human serum apotransferrin in an unknown state (T) and allows its internalization in the cytoplasm. T also forms complexes with metals other than iron. Are these metals incorporated by the iron acquisition pathway and how can other proteins interact with R1? We report here a four-step mechanism for cobalt(III) transfer from CoNtaCO(3)(2-) to T and analyze the interaction of cobalt-loaded transferrin with R1. The first step in cobalt uptake by T is a fast transfer of Co(3+) and CO(3)(2-) from CoNtaCO(3)(2-) to the metal-binding site in the C-lobe of T: direct rate constant, k(1)=(1.1+/-0.1) x 10(6) M(-1) s(-1); reverse rate constant, k(-1)=(1.9+/-0.6) x 10(6) M(-1) s(-1); and equilibrium constant, K=1.7+/-0.7. This step is followed by a proton-assisted conformational change of the C-lobe: direct rate constant, k(2)=(3+/-0.3) x 10(6) M(-1) s(-1); reverse rate constant, k(-2)=(1.6+/-0.3) x 10(-2) s(-1); and equilibrium constant, K(2a)=5.3+/-1.5 nM. The two final steps are slow changes in the conformation of the protein (0.5 h and 72 h), which allow it to achieve its final thermodynamic state and also to acquire second cobalt. The cobalt-saturated transferrin in an unknown state (TCo(2)) interacts with R1 in two different steps. The first is an ultra-fast interaction of the C-lobe of TCo(2) with the helical domain of R1: direct rate constant, k(3)=(4.4+/-0.6)x10(10) M(-1) s(-1); reverse rate constant, k(-3)=(3.6+/-0.6) x 10(4) s(-1); and dissociation constant, K(1d)=0.82+/-0.25 muM. The second is a very slow interaction of the N-lobe of TCo(2) with the protease-like domain of R1. This increases the stability of the protein-protein adduct by 30-fold with an average overall dissociation constant K(d)=25+/-10 nM. The main trigger in the R1-mediated iron acquisition is the ultra-fast interaction of the metal-loaded C-lobe of T with R1. This step is much faster than endocytosis, which in turn is much faster than the interaction of the N-lobe of T with the protease-like domain. This can explain why other metal-loaded transferrins or a protein such as HFE-with a lower affinity for R1 than iron-saturated transferrin but with, however, similar or higher affinities for the helical domain than the C-lobe-competes with iron-saturated transferrin in an unknown state towards interaction with R1.  相似文献   

6.
The oxidation of D-lactobionic acid by Cr(VI) yields the 2-ketoaldobionic acid and Cr(3+) as final products when a 20-times or higher excess of the aldobionic acid over Cr(VI) is used. The redox reaction takes place through a complex multistep mechanism, which involves the formation of intermediate Cr(IV) and Cr(V) species. Cr(IV) reacts with lactobionic acid much faster than Cr(V) and Cr(VI) do, and cannot be directly detected. However, the formation of CrO(2)(2+), observed by the first time for an acid saccharide/Cr(VI) system, provides indirect evidence for the intermediacy of Cr(IV) in the reaction path. Cr(VI) and the intermediate Cr(V) react with lactobionic acid at comparable rates, being the complete rate laws for the Cr(VI) and Cr(V) consumption expressed by: -d[Cr(VI)]/dt=[k(I)+k(II)[H(+)]][lactobionicacid][Cr(VI)], where k(I)=(4.1+/-0.1) x 10(-3) M(-1) s(-1) and k(II)=(2.1+/-0.1) x 10(-2) M(-2) s(-1); and -d[Cr(V)]/dt=[k(III)[H(+)]+(k(IV)+k(V)[H(+)])[lactobionicacid]] [Cr(V)], where k(III)=(1.8+/-0.1) x 10(-3) M(-1) s(-1), k(IV)=(1.1+/-0.1) x 10(-2) M(-1) s(-1) and k(V)=(1.0+/-0.1) x 10(-2) M(-2) s(-1), at 33 degrees C. The Electron Paramagnetic Resonance (EPR) spectra show that five-co-ordinate oxo-Cr(V) bischelates are formed at pH 1-5 with the aldobionic acid bound to Cr(V) through the alpha-hydroxyacid group.  相似文献   

7.
8.
Both peroxynitrous acid and peroxynitrite react with methionine, k(acid) = (1.7 +/- 0.1) x 10(3) M(-1) s(-1) and k(anion) = 8.6 +/- 0.2 M(-1) s(-1), respectively, and with N-acetylmethionine k(acid) = (2.8 +/- 0.1) x 10(3) M(-1) s(-1) and k(anion) = 10.0 +/- 0.1 M(-1) s(-1), respectively, to form sulfoxides. In contrast to the results of Pryor et al. (1994, Proc. Natl. Acad. Sci. USA 91, 11173-11177), a linear correlation between k(obs) and [met] was obtained. Surprisingly, for every two sulfoxides and nitrites formed, one peroxynitrite is converted to nitrate. Thus, methionine also catalyzes the isomerization of peroxynitrite to nitrate. Neither the pH nor the concentration of methionine affected the distribution of the yields of nitrite, nitrate, and methionine sulfoxide, which were the only products detected. No products other than nitrite, nitrate, and methioninesulfoxide could be detected. The reactions of methionine and N-acetylmethionine with peroxynitrous acid and peroxynitrite are simple bimolecular reactions that do not involve an activated form of peroxynitrous acid or of peroxynitrite. Nitrite, produced together with methionine sulfoxide, or present as a contamination in the peroxynitrite preparation, is not innocuous, but oxidizes methionine by one electron, which leads to the formation of methional and ethylene.  相似文献   

9.
Lad L  Mewies M  Raven EL 《Biochemistry》2002,41(46):13774-13781
The catalytic mechanism of recombinant soybean cytosolic ascorbate peroxidase (rsAPX) and a derivative of rsAPX in which a cysteine residue (Cys32) located close to the substrate (L-ascorbic acid) binding site has been modified to preclude binding of ascorbate [Mandelman, D., Jamal, J., and Poulos, T. L. (1998) Biochemistry 37, 17610-17617] has been examined using pre-steady-state and steady-state kinetic techniques. Formation (k1 = 3.3 +/- 0.1 x 10(7) M(-1) s(-1)) of Compound I and reduction (k(2) = 5.2 +/- 0.3 x 10(6) M(-1) s(-1)) of Compound I by substrate are fast. Wavelength maxima for Compound I of rsAPX (lambda(max) (nm) = 409, 530, 569, 655) are consistent with a porphyrin pi-cation radical. Reduction of Compound II by L-ascorbate is rate-limiting: at low substrate concentration (0-500 microM), kinetic traces were monophasic but above approximately 500 microM were biphasic. Observed rate constants for the fast phase overlaid with observed rate constants extracted from the (monophasic) dependence observed below 500 microM and showed saturation kinetics; rate constants for the slow phase were linearly dependent on substrate concentration (k(3-slow)) = 3.1 +/- 0.1 x 10(3) M(-1) s(-1)). Kinetic transients for reduction of Compound II by L-ascorbic acid for Cys32-modified rsAPX are monophasic at all substrate concentrations, and the second-order rate constant (k(3) = 0.9 +/- 0.1 x 10(3) M(-1) s(-1)) is similar to that obtained from the slow phase of Compound II reduction for unmodified rsAPX. Steady-state oxidation of L-ascorbate by rsAPX showed a sigmoidal dependence on substrate concentration and data were satisfactorily rationalized using the Hill equation; oxidation of L-ascorbic acid by Cys32-modified rsAPX showed no evidence of sigmoidal behavior. The data are consistent with the presence of two kinetically competent binding sites for ascorbate in APX.  相似文献   

10.
Xia Z  Azurmendi HF  Mildvan AS 《Biochemistry》2005,44(46):15334-15344
The MutT pyrophosphohydrolase, in the presence of Mg2+, catalyzes the hydrolysis of nucleoside triphosphates by nucleophilic substitution at Pbeta, to yield the nucleotide and PP(i). The best substrate for MutT is the mutagenic 8-oxo-dGTP, on the basis of its Km being 540-fold lower than that of dGTP. Product inhibition studies have led to a proposed uni-bi-iso kinetic mechanism, in which PP(i) dissociates first from the enzyme-product complex (k3), followed by NMP (k4), leaving a product-binding form of the enzyme (F) which converts to the substrate-binding form (E) in a partially rate-limiting step (k5) [Saraswat, V., et al. (2002) Biochemistry 41, 15566-15577]. Single- and multiple-turnover kinetic studies of the hydrolysis of dGTP and 8-oxo-dGTP and global fitting of the data to this mechanism have yielded all of the nine rate constants. Consistent with an "iso" mechanism, single-turnover studies with dGTP and 8-oxo-dGTP hydrolysis showed slow apparent second-order rate constants for substrate binding similar to their kcat/Km values, but well below the diffusion limit (approximately 10(9) M(-1) s(-1)): k(on)app = 7.2 x 10(4) M(-1) s(-1) for dGTP and k(on)app = 2.8 x 10(7) M(-1) s(-1) for 8-oxo-dGTP. These low k(on)app values are fitted by assuming a slow iso step (k5 = 12.1 s(-1)) followed by fast rate constants for substrate binding: k1 = 1.9 x 10(6) M(-1) s(-1) for dGTP and k1 = 0.75 x 10(9) M(-1) s(-1) for 8-oxo-dGTP (the latter near the diffusion limit). With dGTP as the substrate, replacing Mg2+ with Mn2+ does not change k1, consistent with the formation of a second-sphere MutT-M2+-(H2O)-dGTP complex, but slows the iso step (k5) 5.8-fold, and its reverse (k(-5)) 25-fold, suggesting that the iso step involves a change in metal coordination, likely the dissociation of Glu-53 from the enzyme-bound metal so that it can function as the general base. Multiple-turnover studies with dGTP and 8-oxo-dGTP show bursts of product formation, indicating partially rate-limiting steps following the chemical step (k2). With dGTP, the slow steps are the chemical step (k2 = 10.7 s(-1)) and the iso step (k5 = 12.1 s(-1)). With 8-oxo-dGTP, the slow steps are the release of the 8-oxo-dGMP product (k4 = 3.9 s(-1)) and the iso step (k5 = 12.1 s(-1)), while the chemical step is fast (k2 = 32.3 s(-1)). The transient kinetic studies are generally consistent with the steady state kcat and Km values. Comparison of rate constants and free energy diagrams indicate that 8-oxo-dGTP, at low concentrations, is a better substrate than dGTP because it binds to MutT 395-fold faster, dissociates 46-fold slower, and has a 3.0-fold faster chemical step. The true dissociation constants (KD) of the substrates from the E-form of MutT, which can now be obtained from k(-1)/k1, are 3.5 nM for 8-oxo-dGTP and 62 microM for dGTP, indicating that 8-oxo-dGTP binds 1.8 x 10(4)-fold tighter than dGTP, corresponding to a 5.8 kcal/mol lower free energy of binding.  相似文献   

11.
Mechanism of electroporative dye uptake by mouse B cells.   总被引:3,自引:0,他引:3       下载免费PDF全文
The color change of electroporated intact immunoglobulin G receptor (Fc gammaR-) mouse B cells (line IIA1.6) after direct electroporative transfer of the dye SERVA blue G (Mr 854) into the cell interior is shown to be dominantly due to diffusion of the dye after the electric field pulse. Hence the dye transport is described by Fick's first law, where, as a novelty, time-integrated flow coefficients are introduced. The chemical-kinetic analysis uses three different pore states (P) in the reaction cascade (C <==> P1 <==> P2 <==> P3), to model the sigmoid kinetics of pore formation as well as the biphasic pore resealing. The rate coefficient for pore formation k(p) is dependent on the external electric field strength E and pulse duration tE. At E = 2.1 kV cm(-1) and tE = 200 micros, k(p) = (2.4 +/- 0.2) x 10(3) s(-1) at T = 293 K; the respective (field-dependent) flow coefficient and permeability coefficient are k(f)0 = (1.0 +/- 0.1) x 10(-2) s(-1) and P0 = 2 cm s(-1), respectively. The maximum value of the fractional surface area of the dye-conductive pores is 0.035 +/- 0.003%, and the maximum pore number is Np = (1.5 +/- 0.1) x 10(5) per average cell. The diffusion coefficient for SERVA blue G, D = 10(-6) cm2 s(-1), is slightly smaller than that of free dye diffusion, indicating transient interaction of the dye with the pore lipids during translocation. The mean radii of the three pore states are r(P1) = 0.7 +/- 0.1 nm, r(P2) = 1.0 +/- 0.1 nm, and r(P3) = 1.2 +/- 0.1 nm, respectively. The resealing rate coefficients are k(-2) = (4.0 +/- 0.5) x 10(-2) s(-1) and k(-3) = (4.5 +/- 0.5) x 10)(-3) s(-1), independent of E. At zero field, the equilibrium constant of the pore states (P) relative to closed membrane states (C) is K(p)0 = [(P)]/[C] = 0.02 +/- 0.002, indicating 2.0 +/- 0.2% water associated with the lipid membrane. Finally, the results of SERVA blue G cell coloring and the new analytical framework may also serve as a guideline for the optimization of the electroporative delivery of drugs that are similar in structure to SERVA blue G, for instance, bleomycin, which has been used successfully in the new discipline of electrochemotherapy.  相似文献   

12.
In addition to its catalytic domain, phosphoinsositide-dependent protein kinase-1 (PDK1) contains a C-terminal pleckstrin homology (PH) domain, which binds the membrane-bound phosphatidylinositol (3,4,5)-triphosphate [PI(3,4,5)P3] second messenger. Here, we report in vitro kinetic, phosphopeptide mapping, and oligomerization studies that address the role of the PH domain in regulating specific autophosphorylation events, which are required for PDK1 catalytic activation. First, 'inactive' unphosphorylated forms of N-terminal His6 tagged full length (His6-PDK1) and catalytic domain constructs [His6-PDK1(Delta PH)] were generated by treatment with Lambda protein phosphatase (lambda PP). Reconstitution of lambda PP-treated His6-PDK1(Delta PH) catalytic activity required activation loop Ser-241 phosphorylation, which occurred only upon trans-addition of 'active' PDK1 with an apparent bimolecular rate constant of (app)k1(S241) = 374+/-29 M(-1) s(-1). In contrast, full length lambda PP-treated His6-PDK1 catalyzed Ser-241 cis-autophosphorylation with an apparent first-order rate constant of (app)k1(S241) = (5.0+/-1.5) x 10(-4) s(-1) but remained 'inactive'. Reconstitution of lambda PP-treated His(6)-PDK1 catalytic activity occurred only when autophosphorylated in the presence of PI(3,4,5)P3 containing vesicles. PI(3,4,5)P3 binding to the PH domain activated apparent first-order Ser-241 autophosphorylation by 20-fold [(app)k1(S241) = (1.1+/-0.1) x 10(-2) s(-1)] and also promoted biphasic Thr-513 trans-autophosphorylation [(app)k2(T513) = (4.9+/-1.1) x 10(2) M(-1) s(-1) and(app)k3(T513) = (1.5+/-0.2) x 10(3) M(-1) s(-1)]. The results of mutagenesis studies suggest that Thr-513 phosphorylation may cause dissociation of autoinhibitory contacts formed between the contiguous regulatory PH and catalytic kinase domains.  相似文献   

13.
The intermolecular electron transfer kinetics between nitrite reductase (NiR, cytochrome cd1) isolated from Pseudomonas nautica and three cytochromes c isolated from the same strain, as well as the intramolecular electron transfer between NiR heme c and NiR heme d1, were investigated by cyclic voltammetry. All cytochromes (cytochrome c552, cytochrome c553 and cytochrome C553(548)) exhibited well-behaved electrochemistry. The individual diffusion coefficients and mid-point redox potentials were determined. Under the experimental conditions, only cytochrome c552 established a rapid electron transfer with NiR. At acidic pH, the intermolecular electron transfer (cytochrome c(552red)-->NiR heme cox) is a second-order reaction with a rate constant (k2) of 4.1+/-0.1x10(5) M(-1) s(-1) (pH=6.3 and 100 mM NaCl). Under these conditions, the intermolecular reaction represents the rate-limiting step. A minimum estimate of 33 s(-1) could be determined for the first-order rate constant (k1) of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox. The pH dependence of k2 values was investigated at pH values ranging from 5.8 to 8.0. When the pH is progressively shifted towards basic values, the rate constant of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox decreases gradually to a point where it becomes rate limiting. At pH 8.0 we determined a value of 1.4+/-0.7 s(-1), corresponding to a k2 value of 2.2+/-1.1x10(4) M(-1) s(-1) for the intermolecular step. The physiological relevance of these results is discussed with a particular emphasis on the proposed mechanism of "dead-end product" formation.  相似文献   

14.
Reactivation of tetrameric porcine skeletal muscle lactic dehydrogenase after dissociation and extensive unfolding of the monomers by 6 M guanidine hydrochloride (Gdn . HCl) is characterized by sigmoidal kinetics, indicating a complex mechanism involving rate-limiting folding and association steps. For analysis of the association reactions, chemical cross-linking with glutaraldehyde may be used [Hermann, R., Jaenicke, R., & Rudolph, R. (1981) Biochemistry 20, 2195-2201]. The data clearly show that the formation of a dimeric intermediate is determined by a first-order folding reaction of the monomers with k1 = (8.0 +/- 0.1) x 10(-4) s-1. The rate constant of the association of dimers to tetramers which represents the second rate-limiting step on the pathway of reconstitution after guanidine denaturation, was then determined by reactivation and cross-linking experiments after dissociation in 0.1 M H3PO4 containing 1 M Na2SO4. The rate constant for the dimer association (which is the only rate-limiting step after acid dissociation) was k2 = (3.0 +/- 0.5) x 10(4) M-1 s-1. On the basis of the given two rate constants, the complete reassociation pattern of porcine lactic dehydrogenase after dissociation and denaturation in 6 M Gdn . HCl can be described by the kinetic model (formula: see text).  相似文献   

15.
Getoff N 《Radiation research》2000,154(6):692-696
The spectroscopic and kinetic characteristics of beta-carotene radical cation (beta-carotene(.+)) were studied by pulse radiolysis in aerated DMSO solution. The buildup of beta-carotene(.+) with k(1) = (4.8 +/- 0.2) x 10(8) dm(3) mol(-1) s(-1) [lambda(max) = 942 nm, epsilon = (1.6 +/- 0.1) x 10(4) dm(3) mol(-1) cm(-1)] results from an electron transfer from beta-carotene to DMSO(.+). The beta-carotene(.+) species decays exclusively by first-order reaction, k = (2.1 +/- 0.1) x 10(3) s(-1), probably by two processes: (1) at low substrate concentration by hydrolysis and (2) at high concentrations also by formation of dimer radical cation (beta-carotene)(2)(.+). Under the experimental conditions, a small additional beta-carotene triplet-state absorption ((3)beta-carotene) in the range of 525 to 660 nm was observed. This triplet absorption is quenched by oxygen (k = 7 x 10(4) s(-1)), resulting in singlet oxygen ((1)O(2)), whose reactions can also lead to additional formation of beta-carotene(.+).  相似文献   

16.
One-electron oxidation of (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) by the azide radical generates the radical cation (H(4)B(*)(+)) which rapidly deprotonates at physiological pH to give the neutral trihydrobiopterin radical (H(3)B(*)); pK(a) (H(4)B(*)(+) <==> H(3)B(*) + H(+)) = (5.2 +/- 0.1). In the absence of ascorbate both the H(4)B(*)(+) and H(3)B(*) radicals undergo disproportionation to form quinonoid dihydrobiopterin (qH(2)B) and the parent H(4)B with rate constants k(H(4)B(*)(+) + H(4)B(*)(+)) = 6.5 x 10(3) M(-1) s(-1) and k(H(3)B(*) + H(3)B(*)) = 9.3 x 10(4) M(-1) s(-1), respectively. The H(3)B(*) radical is scavenged by ascorbate (AscH(-)) with an estimated rate constant of k(H(3)B(*) + AscH(-)) similar 1.7 x 10(5) M(-1) s(-1). At physiological pH the pterin rapidly scavenges a range of biological oxidants often associated with cellular oxidative stress and nitric oxide synthase (NOS) dysfunction including hydroxyl ((*)OH), nitrogen dioxide (NO(2)(*)), glutathione thiyl (GS(*)), and carbonate (CO(3)(*-)) radicals. Without exception these radicals react appreciably faster with H(4)B than with AscH(-) with k(*OH + H(4)B) = 8.8 x 10(9) M(-1) s(-1), k(NO(2)(*) + H(4)B) = 9.4 x 10(8) M(-1) s(-1), k(CO(3)(*-) + H(4)B) = 4.6 x 10(9) M(-1) s(-1), and k(GS(*) + H(4)B) = 1.1 x 10(9) M(-1) s(-1), respectively. The glutathione disulfide radical anion (GSSG(*-)) rapidly reduces the pterin to the tetrahydrobiopterin radical anion (H(4)B(*-)) with a rate constant of k(GSSG(*-) + H(4)B) similar 4.5 x 10(8) M(-1) s(-1). The results are discussed in the context of the general antioxidant properties of the pterin and the redox role played by H(4)B in NOS catalysis.  相似文献   

17.
The enzyme complex prothrombinase plays a pivotal role in fibrin clot development through the production of thrombin, making this enzyme complex an attractive target for therapeutic regulation. This study both functionally and structurally characterizes a potent, highly selective, active site directed inhibitor of human factor Xa and prothrombinase, PD0313052, and identifies structurally conserved residues in factor Xa and prothrombinase. Analyses of the association and dissociation of PD0313052 with human factor Xa identified a reversible, slow-onset mechanism of inhibition and a simple, single-step bimolecular association between factor Xa and PD0313052. This interaction was governed by association (k(on)) and dissociation (k(off)) rate constants of (1.0 +/- 0.1) x 10(7) M(-1) s(-1) and (1.9 +/- 0.5) x 10(-3) s(-1), respectively. The inhibition of human factor Xa by PD0313052 displayed significant tight-binding character described by a Ki* = 0.29 +/- 0.08 nM. Similar analyses of the inhibition of human prothrombinase by PD0313052 also identified a slow-onset mechanism with a Ki* = 0.17 +/- 0.03 nM and a k(on) and k(off) of (0.7 +/- 0.1) x 10(7) M(-1) s(-1) and (1.7 +/- 0.8) x 10(-3) s(-1), respectively. Crystals of factor Xa and PD0313052 demonstrated hydrogen bonding contacts within the S1-S4 pocket at residues Ser195, Asp189, Gly219, and Gly216, as well as interactions with aromatic residues within the S4 pocket. Overall, these data demonstrate that the inhibition of human factor Xa by PD0313052 occurs via a slow, tight-binding mechanism and indicate that active site residues of human factor Xa, including the catalytic Ser195, are effectively unaltered following assembly into prothrombinase.  相似文献   

18.
The large increase in fluorescence upon binding of five para- and meta-phenyl substituted hydroxy and methoxy derivatives of the Hoechst dye with poly[d(A-T)], d(CGCGAATTCGCG)2, and its corresponding T4-looped 28-mer hairpin was used to monitor the binding by equilibrium titrations and by stopped-flow kinetics. The affinity increases in the same order for the three DNAs: p-OH相似文献   

19.
To elucidate a detailed catalytic mechanism for nitrile hydratases (NHases), the pH and temperature dependence of the kinetic constants k(cat) and K(m) for the cobalt-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) were examined. PtNHase was found to exhibit a bell-shaped curve for plots of relative activity versus pH at pH 3.2-11 and was found to display maximal activity between pH 7.2 and 7.8. Fits of these data provided pK(E)(S1) and pK(E)(S2) values of 5.9 +/- 0.1 and 9.2 +/- 0.1 (k(cat)' = 130 +/- 1 s(-1)), respectively, and pK(E)(1) and pK(E)(2) values of 5.8 +/- 0.1 and 9.1 +/- 0.1 (k(cat)'/K(m)' = (6.5 +/- 0.1) x 10(3) s(-1) mm(-1)), respectively. Proton inventory studies indicated that two protons are transferred in the rate-limiting step of the reaction at pH 7.6. Because PtNHase is stable at 60 degrees C, an Arrhenius plot was constructed by plotting ln(k(cat)) versus 1/T, providing E(a) = 23.0 +/- 1.2 kJ/mol. The thermal stability of PtNHase also allowed DeltaH(0) ionization values to be determined, thus helping to identify the ionizing groups exhibiting the pK(E)(S1) and pK(E)(S2) values. Based on DeltaH(0)(ion) data, pK(E)(S1) is assigned to betaTyr(68), whereas pK(E)(S2) is assigned to betaArg(52), betaArg(157), or alphaSer(112) (NHases are alpha(2)beta(2)-heterotetramers). A combination of these data with those previously reported for NHases and synthetic model complexes, along with sequence comparisons of both iron- and cobalt-type NHases, allowed a novel catalytic mechanism for NHases to be proposed.  相似文献   

20.
Transferrin's mechanism of interaction with receptor 1   总被引:1,自引:0,他引:1  
The kinetics and thermodynamics of the interactions of transferrin receptor 1 with holotransferrin and apotransferrin in neutral and mildly acidic media are investigated at 37 degrees C in the presence of CHAPS micelles. Receptor 1 interacts with CHAPS in a very fast kinetic step (<1 micros). This is followed in neutral media by the interaction with holotransferrin which occurs in two steps after receptor deprotonation, with a proton dissociation constant (K(1a)) of 10.0 +/- 1.5 nM. The first step is detected by the T-jump technique and is associated with a molecular interaction between the receptor and holotransferrin. It occurs with a first-order rate constant (k(-1)) of (1.6 +/- 0.2) x 10(4) s(-1), a second-order rate constant (k(1)) of (3.20 +/- 0.2) x 10(10) M(-1) s(-1), and a dissociation constant (K(1)) of 0.50 +/- 0.07 microM. This step is followed by a slow change in the conformation with a relaxation time (tau(2)) of 3400 +/- 400 s and an equilibrium constant (K(2)) of (4.6 +/- 1.0) x 10(-3) with an overall affinity of the receptor for holotransferrin [(K'1)(-1)] of (4.35 +/- 0.60) x 10(8) M(-1). Apotransferrin does not interact with receptor 1 in neutral media, between pH 4.9 and 6, it interacts with the receptor in two steps after a receptor deprotonation (K(2a) = 2.30 +/- 0.3 microM). The first step occurs in the range of 1000-3000 s. It is ascribed to a slow change in the conformation which rate-controls a fast interaction between apotransferrin and receptor 1 with an overall affinity constant [(K(3))(-1)] of (2.80 +/- 0.30) x 10(7) M(-1). These results imply that receptor 1 probably exists in at least two forms, the neutral species which interacts with holotransferrin and not with apotransferrin and the acidic species which interacts with apotransferrin. At first, the interaction of the neutral receptor with holotransferrin is extremely fast. It is followed by the slow change in conformation, which leads to an important stabilization of the thermodynamic structure. In the acidic media of the endosome, the interaction of apotransferrin with the acidic receptor is sufficiently strong and rate-controlled by a very slow change in conformation which allows recycling back to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号