首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Summary The three yolk proteins (YP1, YP2 and YP3) of Drosophila melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated in the developing oocytes to provide a nutrient source for embryogenesis. We have described the phenotype of a temperaturesensitive female-sterile mutant, fs(1) K313, and characterised its yolk proteins. This mutation affects the secretion of YP2 and is the first mutation affecting YP2 to be described. Using genetic and molecular tests we argue that the female-sterile phenotype results, at least in part, from the abnormal secretion of YP2 perturbing the follicle cell secretory pathway in general and thus causing defects in chorion protein secretion. The gene coding for YP2 in fs (1) K313 has been cloned and sequenced. Two amino acid substitutions have been found which probably cause the abnormal secretion of YP2 and the resulting female-sterile phenotype.  相似文献   

3.
4.
5.
6.
7.
8.
9.
R. S. Rasooly 《Genetics》1996,144(4):1725-1734
A new meiotic mutation, morewright (mwr) was identified by screening for new mutations that act as dominant enhancers of the dosage-sensitive Drosophila melanogaster female meiotic mutant, nod(DTW). mwr is a recessive meiotic mutant, specifically impairing the segregation of nonexchange chromosomes. Cytological evidence suggests that the meitoic defect in mwr/mwr females is in homologue recognition because the chromosomes appear to be misaligned on an intact spindle. The mwr mutation was recovered during a screen of random P-element insertions on a chromosome with a single insertion located at 50C. The P-element insertion is a recessive female-sterile mutation. While excision of the P element from the mwr-bearing chromosome partially relieves the female sterility, the excisions retain the dominant nod(DTW)-enhancing activity. The mwr meiotic phenotype maps very close to the female-sterile P insertion. Thus the mwr locus appears to encode a function required for partner recognition in meiosis, although its relationship to the neighboring female-sterile mutation remains to be elucidated.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号