首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Zhang D  Zhou G  Liu B  Kong Y  Chen N  Qiu Q  Yin H  An J  Zhang F  Chen F 《Plant physiology》2011,157(2):608-619
Numerous auxiliary nuclear factors have been identified to be involved in the dynamics of the photosystem II (PSII) complex. In this study, we characterized the high chlorophyll fluorescence243 (hcf243) mutant of Arabidopsis (Arabidopsis thaliana), which shows higher chlorophyll fluorescence and is severely deficient in the accumulation of PSII supercomplexes compared with the wild type. The amount of core subunits was greatly decreased, while the outer antenna subunits and other subunits were hardly affected in hcf243. In vivo protein-labeling experiments indicated that the synthesis rate of both D1 and D2 proteins decreased severely in hcf243, whereas no change was found in the rate of other plastid-encoded proteins. Furthermore, the degradation rate of the PSII core subunit D1 protein is higher in hcf243 than in the wild type, and the assembly of PSII is retarded significantly in the hcf243 mutant. HCF243, a nuclear gene, encodes a chloroplast protein that interacts with the D1 protein. HCF243 homologs were identified in angiosperms with one or two copies but were not found in lower plants and prokaryotes. These results suggest that HCF243, which arose after the origin of the higher plants, may act as a cofactor to maintain the stability of D1 protein and to promote the subsequent assembly of the PSII complex.  相似文献   

2.
3.
Hcf136 encodes a hydrophilic protein localized in the lumen of stroma thylakoids. Its mutational inactivation in Arabidopsis thaliana results in a photosystem II (PHII)-less phenotype. Under standard illumination, PSII is not detectable and the amount of photosystem I (PSI) is reduced, which implies that HCF136p may be required for photosystem biogenesis in general. However, at low light, a comparison of mutants with defects in PSII, PSI, and the cytochrome b(6)f complex reveals that HCF136p regulates selectively biogenesis of PSII. We demonstrate by in vivo radiolabeling of hcf136 that biogenesis of the reaction center (RC) of PSII is blocked. Gel blot analysis and affinity chromatography of solubilized thylakoid membranes suggest that HCF136p associates with a PSII precomplex containing at least D2 and cytochrome b(559). We conclude that HCF136p is essential for assembly of the RC of PSII and discuss its function as a chaperone-like assembly factor.  相似文献   

4.
5.
To understand the regulatory mechanisms underlying the biogenesis of photosystem II (PSII) we have characterized the nuclear mutant hcf136 of Arabidopsis thaliana and isolated the affected gene. The mutant is devoid of any photosystem II activity, and none of the nuclear- and plastome-encoded subunits of this photosystem accumulate to significant levels. Protein labelling studies in the presence of cycloheximide showed that the plastome-encoded PSII subunits are synthesized but are not stable. The HCF136 gene was isolated by virtue of its T-DNA tag, and its identity was confirmed by complementation of homozygous hcf136 seedlings. Immunoblot analysis of fractionated chloroplasts showed that the HCF136 protein is a lumenal protein, found only in stromal thylakoid lamellae. The HCF136 protein is produced already in dark-grown seedlings and its levels do not increase dramatically during light-induced greening. This accumulation profile confirms the mutational data by showing that the HCF136 protein must be present when PSII complexes are made. HCF136 homologues are found in the cyanobacterium Synechocystis species PCC6803 (slr2034) and the cyanelle genome of Cyanophora paradoxa (ORF333), but are lacking in the plastomes of chlorophytes and metaphytes as well as from those of rhodo- and chromophytes. We conclude that HCF136 encodes a stability and/or assembly factor of PSII which dates back to the cyanobacterial-like endosymbiont that led to the plastids of the present photosynthetic eukaryotes.  相似文献   

6.
We have isolated the nuclear photosynthetic mutant hcf153 which shows reduced accumulation of the cytochrome b(6)f complex. The levels and processing patterns of the RNAs encoding the cytochrome b(6)f subunits are unaltered in the mutant. In vivo protein labeling experiments and analysis of polysome association revealed normal synthesis of the large chloroplast-encoded cytochrome b(6)f subunits. The mutation resulted from a T-DNA insertion and the affected nuclear gene was cloned. HCF153 encodes a 15 kDa protein containing a chloroplast transit peptide. Sequence similarity searches revealed that the protein is restricted to higher plants. A HCF153-Protein A fusion construct introduced into hcf153 mutant plants was able to substitute the function of the wild-type protein. Fractionation of intact chloroplasts from these transgenic plants suggests that most or all of the fusion protein is tightly associated with the thylakoid membrane. Our data show that the identified factor is a novel protein that could be involved in a post-translational step during biogenesis of the cytochrome b(6)f complex. It is also possible that HCF153 is necessary for translation of one of the very small subunits of the cytochrome b(6)f complex.  相似文献   

7.
8.
To understand the biogenesis of the plastid cytochrome b(6)f complex and to identify the underlying auxiliary factors, we have characterized the nuclear mutant hcf164 of Arabidopsis and isolated the affected gene. The mutant shows a high chlorophyll fluorescence phenotype and is severely deficient in the accumulation of the cytochrome b(6)f complex subunits. In vivo protein labeling experiments indicated that the mutation acts post-translationally by interfering with the assembly of the complex. Because of its T-DNA tag, the corresponding gene was cloned and its identity confirmed by complementation of homozygous mutant plants. HCF164 encodes a thioredoxin-like protein that possesses disulfide reductase activity. The protein was found in the chloroplast, where it is anchored to the thylakoid membrane at its lumenal side. HCF164 is closely related to the thioredoxin-like protein TxlA of Synechocystis sp PCC6803, most probably reflecting its evolutionary origin. The protein also shows a limited similarity to the eubacterial CcsX and CcmG proteins, which are required for the maturation of periplasmic c-type cytochromes. The putative roles of HCF164 for the assembly of the cytochrome b(6)f complex are discussed.  相似文献   

9.
10.
11.
We have constructed a tobacco psbA gene deletion mutant that is devoid of photosystem II (PSII) complex. Analysis of thylakoid membranes revealed comparable amounts, on a chlorophyll basis, of photosystem I (PSI), the cytochrome b6f complex and the PSII light-harvesting complex (LHCII) antenna proteins in wild-type (WT) and Δ psbA leaves. Lack of PSII in the mutant, however, resulted in over 10-fold higher relative amounts of the thylakoid-associated plastid terminal oxidase (PTOX) and the NAD(P)H dehydrogenase (NDH) complex. Increased amounts of Ndh polypeptides were accompanied with a more than fourfold enhancement of NDH activity in the mutant thylakoids, as revealed by in-gel NADH dehydrogenase measurements. NADH also had a specific stimulating effect on P700+ re-reduction in the Δ psbA thylakoids. Altogether, our results suggest that enhancement of electron flow via the NDH complex and possibly other alternative electron transport routes partly compensates for the loss of PSII function in the Δ psbA mutant. As mRNA levels were comparable in WT and Δ psbA plants, upregulation of the alternative electron transport pathways (NDH complex and PTOX) occurs apparently by translational or post-translational mechanisms.  相似文献   

12.
13.
14.
15.
Translational regulation has been identified as one of the key steps in chloroplast-encoded gene expression. Genetic and biochemical analysis with Chlamydomonas reinhardtii has implicated nucleus-encoded factors that interact specifically with the 5' untranslated region of chloroplast mRNAs to mediate light-activated translation. F35 is a nuclear mutation in C. reinhardtii that specifically affects translation of the psbA mRNA (encoding D1, a core polypeptide of photosystem II), causing a photosynthetic deficiency in the mutant strain. The F35 mutant has reduced ribosome association of the psbA mRNA as a result of decreased translation initiation. This reduction in ribosome association correlates with a decrease in the stability of the mRNA. Binding activity of the psbA specific protein complex to the 5' untranslated region of the mRNA is diminished in F35 cells, and two members of this binding complex (RB47 and RB55) are reduced compared with the wild type. These data suggest that alteration of members of the psbA mRNA binding complex in F35 cells results in a reduction in psbA mRNA-protein complex formation, thereby causing a decrease in translation initiation of this mRNA.  相似文献   

16.
17.
The goal of this research is elucidation of the molecular mechanism for the unique photosystem II (PSII) damage and repair cycle in chloroplasts. A frequently occurring, irreversible photooxidative damage inhibits the PSII charge separation reaction and stops photosynthesis. The chloroplast PSII repair process rectifies this adverse effect by selectively removing and replacing the photoinactivated D1/32-kD reaction center protein (the chloroplast-encoded psbA gene product) from the massive (>1,000 kD) water-oxidizing and O2-evolving PSII holocomplex. DNA insertional mutagenesis in the model organism Chlamydomonas reinhardtii was applied for the isolation and characterization of rep27, a repair-aberrant mutant. Gene cloning and biochemical analyses in this mutant resulted in the identification of REP27, a nuclear gene encoding a putative chloroplast-targeted protein, which is specifically required for the completion of the D1 turnover process but is not essential for the de novo biogenesis and assembly of the PSII holocomplex in this model green alga. The REP27 protein contains two highly conserved tetratricopeptide repeats, postulated to facilitate the psbA mRNA cotranslational insertion of the nascent D1 protein in the existing PSII core template. Elucidation of the PSII repair mechanism may reveal the occurrence of hitherto unknown regulatory and catalytic reactions for the selective in situ replacement of specific proteins from within multiprotein complexes.  相似文献   

18.
Proteins are translocated across the chloroplast thylakoid membrane by a variety of mechanisms. Some proteins engage a translocation machinery that is derived from the bacterial Sec export system and require an interaction with a chloroplast-localized SecA homologue. Other proteins engage a machinery that is SecA-independent, but requires a transmembrane pH gradient. Recently, a counterpart to this Delta pH mechanism was discovered in bacteria. Genetic studies revealed that one maize protein involved in this mechanism, HCF106, is related in both structure and function to the bacterial tatA and tatB gene products. We describe here the mutant phenotype and molecular cloning of a second maize gene that functions in the Delta pH mechanism. This gene, thylakoid assembly 4 (tha4), is required specifically for the translocation of proteins that engage the Delta pH pathway. The sequence of the tha4 gene product resembles those of the maize hcf106 gene and the bacterial tatA and tatB genes. Sequence comparisons suggest that tha4 more closely resembles tatA, and hcf106 more closely resembles tatB. These findings support the notion that this sec-independent translocation mechanism has been highly conserved during the evolution of eucaryotic organelles from bacterial endosymbionts.  相似文献   

19.
20.
Light has been proposed to stimulate the translation of Chlamydomonas reinhardtii chloroplast psbA mRNA by activating a protein complex associated with the 5' untranslated region of this mRNA. The protein complex contains a redox-active regulatory site responsive to thioredoxin. We identified RB60, a protein disulfide isomerase-like member of the protein complex, as carrying the redox-active regulatory site composed of vicinal dithiol. We assayed in parallel the redox state of RB60 and translation of psbA mRNA in intact chloroplasts. Light activated the specific oxidation of RB60, on the one hand, and reduced RB60, probably via the ferredoxin-thioredoxin system, on the other. Higher light intensities increased the pool of reduced RB60 and the rate of psbA mRNA translation, suggesting that a counterbalanced action of reducing and oxidizing activities modulates the translation of psbA mRNA in parallel with fluctuating light intensities. In the dark, chemical reduction of the vicinal dithiol site did not activate translation. These results suggest a mechanism by which light primes redox-regulated translation by an unknown mechanism and then the rate of translation is determined by the reduction-oxidation of a sensor protein located in a complex bound to the 5' untranslated region of the chloroplast mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号