共查询到20条相似文献,搜索用时 15 毫秒
1.
Jurdana M Fumagalli G Grubic Z Lorenzon P Mars T Sciancalepore M 《Cellular and molecular neurobiology》2009,29(1):123-131
Recent investigations suggest that the effects of neural agrin might not be limited to neuromuscular junction formation and
maintenance and that other aspects of muscle development might be promoted by agrin. Here we tested the hypothesis that agrin
induces a change in the excitability properties in primary cultures of non-innervated human myotubes. Electrical membrane
properties of human myotubes were recorded using the whole-cell patch-clamp technique. Cell incubation with recombinant chick
neural agrin (1 nM) led to a more negative membrane resting potential. Addition of strophanthidin, a blocker of the Na+/K+ ATPase, depolarized agrin-treated myotubes stronger than control, indicating, in the presence of agrin, a higher contribution
of the Na+/K+ ATPase in establishing the resting membrane potential. Indeed, larger amounts of both the α1 and the α2 isoforms of the Na+/K+ ATPase protein were expressed in agrin-treated cells. A slight but significant down-regulation of functional apamin-sensitive
K+ channels was observed after agrin treatment. These results indicate that neural agrin might act as a trophic factor promoting
the maturation of membrane electrical properties during differentiation, confirming the role of agrin as a general promoter
of muscle development.
Tomaz Mars and Marina Sciancalepore contributed equally to this article.
A preliminary account of our data has been presented in abstract form.
Jurdana M, Mars T, Grubic Z, Sciancalepore M (2006) Agrin promotes the maturation of non-innervated human myotubes. Acta
Physiol 188(Suppl 652):P6. 相似文献
2.
Serum, liver and brain tryptophan concentrations and brain Na+K+-ATPase activity were studied in streptozotocin diabetic rats after an acute tryptophan load. Results show that tryptophan administration in the experimental diabetic group produces a generalized fall in tryptophan uptake in all the brain regions studied, though it does not increase serum and hepatic tryptophan concentrations. These parameters are normalized in insulin-treated diabetic rats. With regard to Na+K+-ATPase, diabetic animals showed a diminished and unchanged activity; whereas, the other two experimental groups showed a gradual decrease and a negative correlation with brain tryptophan uptake. 相似文献
3.
Pszon-Bartosz K Hansen JS Stibius KB Groth JS Emnéus J Geschke O Hélix-Nielsen C 《Biochemical and biophysical research communications》2011,414(1):96-100
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast. 相似文献
4.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system. 相似文献
5.
Steady-state fluxes of 86Rb+ (as a tracer for K+) were measured in Chinese hamster ovary cells (CHO-K1) and a mutant (CR1) defective in the regulation of cholesterol biosynthesis; the membrane cholesterol content of this mutant was varied by growing it on a range of cholesterol supplements to lipid-free medium (Sinensky, M. (1978) Proc. Natl. Acad. Sci. U.S. 75, 1247–1249).Analogous to previous findings in ascites tumor cells, 86Rb+ influx in the parent strain was differentiated into a ouabain-inhibitable ‘pump’ flux, furosemide-sensitive, chloride-dependent exchange diffusion, and a residual ‘leak’ flux.On the basis of this flux characterization, 86Rb+ pump and leak fluxes were measured in the mutant as a function of membrane cholesterol content. Pump and leak fluxes, when expressed per ml cell water, were independent of the cholesterol content of the mutant. Moreover, 86Rb+ fluxes in the mutant were equal to those in the parent strain. Our data imply that the flux behavior of K+ in the steady state is independent of the ordering of membrane lipid acyl chains. 相似文献
6.
María Sylvia Viola Graciela Bojorge Georgina Rodríguez de Lores Arnaiz María Amelia Enero 《Cellular and molecular neurobiology》1989,9(2):263-271
1. The activities of ATPase in rat CNS were studied 3 hr after administration of the noradrenaline uptake inhibitor, desipramine (DMI: 10 mg.kg-1, i.p.). Na+K+-ATPase activity significantly increased after DMI in the whole particulate from hypothalamus and mesencephalus but no changes in frontal cortex or in pons-medulla oblongata areas were found. This increase was prevented when the animals were pretreated with the noradrenergic neurotoxic N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). 2. Purified membrane fractions from hypothalamus were obtained by differential and sucrose gradient centrifugation (0.8-1.2 M sucrose). It was observed that after DMI, Na+,K+-ATPase activity increased only in the membranous fraction lying at 0.9 M sucrose. 3. Mg2+- or Ca2+-ATPase activities were not modified by DMI treatment. 4. Citalopram, a specific serotonergic uptake inhibitor, did not affect ATPase activities. 5. The results obtained could indicate that DMI acute administration selectively stimulates Na+,K+-ATPase activity of certain membranes of the CNS after an increase in the concentration of the noradrenergic neurotransmitter in the synaptic gap. 相似文献
7.
Regulation of the Na+/K+-ATPase by insulin: Why and how? 总被引:4,自引:0,他引:4
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits ( and ) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed. 相似文献
8.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl– dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl– with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx. 相似文献
9.
Changes in demands for Na+ transport alter expression of the Na+,K+-ATPase subunit isoforms. In skeletal muscle, the effects of these changes on expression the 2 isoform, the major isoform expressed in differentiated muscle cell, is not known. Therefore, this study examines regulation of the -subunit isoforms by Na+ in the C2C12 skeletal muscle cell that expresses the 1 and 2 isoforms. Western blot analysis showed that in differentiating C2C12 muscle cell, but not in undifferentiated myoblast, veratridine, a Na+ channel activator, greatly increased expression of the 2 isoform; expression of 1 was unaltered. Because the level of -actinin was unaltered, the data suggest that veratridine treatment did not significantly alter the progression of cell differentiation. Furthermore, a reduction in Na+ transport by tetrodotoxin again failed to alter expression of a1. Thus, in C2C12 skeletal muscle cell, changes in Na+ transport alters expression of the 2, but not the 1 isoform. These results differ from those observed previously in muscle cells that express only the 1 isoform. Because mammalian skeletal muscle expresses both the 1- and 2-subunit isoforms, the differential regulation that was observed may be physiologically relevant in these muscle cells in vivo. 相似文献
10.
The inhibition of K+ uptake through the plasma membrane resulting from injury caused by cutting, or from application of polyamines (PAs), has been investigated in root segments of maize (Zea mays L.) and pea (Pisum sativum L.). It was found, for both treatments, that K+ uptake recovered if the segments were washed for 2 h. The K+ uptake inhibited by cutting and that inhibited by spermidine treatment were stimulated to the same extent by fusicoccin. In addition, there was a correlation between the extent of the recovery of K+ uptake caused by washing and the distribution, along the root axis, of both PAs and the activities of enzymes responsible for PA degradation. In apical segments of maize, where the PA content and the activity of the degradative enzyme polyamine oxidase (EC 1.5.3.3) were higher than in the more distal segments, the recovery of K+ uptake caused by washing was also higher. On the other hand, the opposite trend was observed in root segments of pea, where the PA content and the activity of the degradative enzyme diamine oxidase (EC 1.4.3.6) were higher in distal segments in which K+ uptake was greatly stimulated by washing. The effect of the amine-oxidase inhibitor, aminoguanidine, indicates that the degradation products of PAs are involved in the mechanism of inhibition of K+ uptake by PAs. The data also seem to indicate that PAs and their degradation products are responsible for the inhibition of K+ uptake occurring as a result of injury sustained by cutting roots into segments.Abbreviations DAO
diamine oxidase
- FC
fusicoccin
- PA
polyamine
- PAO
polyamine oxidase
- PUT
putrescine
- SPD
spermidine 相似文献
11.
Eguchi H Morii M Takahashi Y Sakai H Nakano M Ochiai H Shirahata A Hara Y Kawamura M Takeda K 《The Journal of membrane biology》2008,221(3):133-140
Leucines were mutated within the sequence L311ILGYTWLE319 of the extracellular loop flanking the third (M3) and fourth (M4) transmembrane segments (M3/M4 loop) of the Torpedo Na+,K+-ATPase α-subunit. Replacement of Leu311 with Glu resulted in a considerable loss of Na+,K+-ATPase activity. Replacement of Leu313 with Glu shifted the equilibrium of E1P and E2P toward E1P and reduced the rate of the E1P to E2P transition. The reduction of the transition rate and stronger inhibition of Na+,K+-ATPase activity by Na+ at higher concentrations together suggest that there is interference of Na+ release on the extracellular side in the Leu313 mutant. Thus, Leu313 could be in the pathway of Na+ exit. Replacement of Leu318 with Glu yielded an enzyme with significantly reduced apparent affinity for both vanadate and K+, with an equilibrium shifted toward E2P and no alteration in the transition rate. The reduced vanadate affinity is due to the lower rate of production of vanadate-reactive
[K+
2]E2 caused by inhibition of dephosphorylation through reduction of the K+ affinity of E2P. Thus, Leu318 may be a critical position in guiding external K+ to its binding site. 相似文献
12.
Mandal Atin K. Roy Koushik Sil Parames C. Yadav Satya P. Sen Parimal C. 《Molecular and cellular biochemistry》2001,223(1-2):7-14
A protein isolated from goat testis cytosol is found to inhibit Na+,K+-ATPase from rat brain microsomes. The inhibitor has been purified by ammonium sulphate precipitation followed by hydroxyapatite column chromatography. The purified fraction appears as a single polypeptide band on 10% SDS-PAGE of approximate molecular mass of 70 kDa. The concentration at which 50% inhibition (I50) occurs is in the nanomolar range. The inhibitor seems to bind Na+,K+-ATPase reversibly at ATP binding site in a competitive manner with ATP, but away from ouabain binding site. It does not affect p-nitrophenyl-phosphatase activity. The inhibitor is found to inhibit the phosphorylation step of the Na+,K+-ATPase. The enhancement of tryptophan fluorescence and changes in CD pattern suggest conformational changes of Na+,K+-ATPase on binding to the inhibitor. Amino acid sequence of the trypsinised fragments show some homology with aldehyde reductase. 相似文献
13.
William J. Ball Arnold Schwartz James L. Lessard 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,719(3):413-423
Four stable hybridoma cell lines secreting antibodies specific to the membrane (Na+ + K+)-dependent ATPase isolated from lamb kidney medulla have been produced by fusing mouse myeloma cells with spleen cells from immunized mice. These cell lines produce IgG γ1 heavy chain and κ light chain antibodies which are directed against the catalytic or α-subunit of the (Na+ + K+)-ATPase enzyme. Binding studies, using antibodies that were produced by growing hybridomas in vivo and purified by affinity column chromatography, suggest a somewhat higher affinity of these antibodies for the isolated α-subunit than for the ‘native’ holoenzyme. In addition, these monoclonal antibodies show no reactivity with either the glycoprotein (β) subunit of the lamb enzyme nor the (Na+ + K+)-ATPase from rat kidney, an ouabain-insensitive organ. Cotitration binding experiments have shown that the antibodies from two cell lines originally isolated independently from the same culture plate well population of fused cells bind to the same determinant site and are probably the same antibody. Cotitration and competition binding studies with two other antibodies have revealed two additional distinct antibody binding sites which appear to have little overlap with the first site. One of the three different antibodies isolated caused a partial inhibition of the (Na+ + K+)-ATPase activity. This antibody appears to be directed against a specific functionally important site of the α-subunit and is a competitive inhibitor of ATP binding. Under optimum conditions of ATPase activity, this inhibitory effect is not altered by the presence of the other two antibodies. 相似文献
14.
Khoa T. D. Nguyen Jae-Won Shin Caroline Rae Ellas K. Nanitsos Gabriela B. Acosta David V. Pow Vlado Buljan Maxwell R. Bennett Paul L. Else Vladimir J. Balcar 《Neurochemical research》2009,34(10):1767-1774
The naturally occurring toxin rottlerin has been used by other laboratories as a specific inhibitor of protein kinase C-delta
(PKC-δ) to obtain evidence that the activity-dependent distribution of glutamate transporter GLAST is regulated by PKC-δ mediated
phosphorylation. Using immunofluorescence labelling for GLAST and deconvolution microscopy we have observed that d-aspartate-induced redistribution of GLAST towards the plasma membranes of cultured astrocytes was abolished by rottlerin.
In brain tissue in vitro, rottlerin reduced apparent activity of (Na+, K+)-dependent ATPase (Na+, K+-ATPase) and increased oxygen consumption in accordance with its known activity as an uncoupler of oxidative phosphorylation
(“metabolic poison”). Rottlerin also inhibited Na+, K+-ATPase in cultured astrocytes. As the glutamate transport critically depends on energy metabolism and on the activity of
Na+, K+-ATPase in particular, we suggest that the metabolic toxicity of rottlerin and/or the decreased activity of the Na+, K+-ATPase could explain both the glutamate transport inhibition and altered GLAST distribution caused by rottlerin even without
any involvement of PKC-δ-catalysed phosphorylation in the process. 相似文献
15.
16.
Jens Chr. Skou 《Bioscience reports》1998,18(4):155-169
The identification of the sodium potassium pump as a Na+, K+-ATPase is described. 相似文献
17.
Skou JC 《Bioscience reports》2004,24(4-5):436-451
The identification of the sodium potassium pump as a Na+, K+-ATPase is described. 相似文献
18.
Guennoun-Lehmann S Fonseca JE Horisberger JD Rakowski RF 《The Journal of membrane biology》2007,216(2-3):107-116
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric
H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected
with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act
on Na,K-ATPase. 相似文献
19.
Ouabain resistance of the epithelial cell line (Ma104) is not due to lack of affinity of its pumps for the drug 总被引:2,自引:0,他引:2
R. G. Contreras A. Lázaro A. Mújica L. González-Mariscal J. Valdés M. R. García-Villegas M. Cereijido 《The Journal of membrane biology》1995,145(3):295-303
Na+, K+-pumps of most eukaryotic animal cells bind ouabain with high affinity, stop pumping, and consequently loose K+, detach from each other and from the substrate, and die. Lack of affinity for the drug results in ouabain resistance. In this work, we report that Ma104 cells (epithelial from Rhesus monkey kidney) have a novel form of ouabain-resistance: they bind the drug with high affinity (Km about 4×10–8
m), they loose their K+ and stop proliferating but, in spite of these, up to 100% of the cells remain attached in 1.0 m ouabain, and 53% in 1.0 mm. When 4 days later ouabain is removed from the culture medium, cells regain K+ and resume proliferation. Strophanthidin, a drug that attaches less firmly than ouabain, produces a similar phenomenon, but allows a considerably faster recovery. This reversal may be associated to the fact that, while in ouabain-sensitive MDCK cells Na+, K+-ATPases blocked by the drug are retrieved from the plasma membrane, those in Ma104 cells remain at the cell-cell border, as if they were cell-cell attaching molecules. Cycloheximide (10 g/ml) and chloroquine (10 m) impair this recovery, suggesting that it also depends on the synthesis and insertion of a crucial protein component, that may be different from the pump itself. Therefore ouabain resistance of Ma104 cells is not due to a lack of affinity for the drug, but to a failure of its Na+, K+-ATPases to detach from the plasma membrane in spite of being blocked by ouabain.We wish to thank Dr. E. Rodríguez-Boulán for the generous supply of Ma104 cells, as well as acknowledge the generous economic support of the National Research Council (CONACYT) of Mexico. Confocal experiments were performed in the Confocal Microscopy Unit of the Physiology Department, CINVESTAV. 相似文献
20.
Gerasimos S. Filippatos W. Frank Hughes Renli Qiao J. Iasha Sznajder Bruce D. Uhal 《In vitro cellular & developmental biology. Animal》1997,33(3):195-200
Summary Active transport of sodium by pulmonary alveolar epithelial cells (AEC) is believed to be an important component of edema
clearance in the normal and injured lung. Data supporting this premise have come from measurements of sodium movement across
AEC monolayers or from perfused lung model systems. However, direct measurement of fluid flux across AEC monolayers has not
been reported. In the present work, AEC were studied with an experimental system for the measurement of fluid flux (Jv) across
functionally intact cell monolayers. Primary adult rat type II alveolar epithelial cells were cultured on 0.8 μm nuleopore
filters previously coated with gelatin and fibronectin. Intact monolayers were verified by high electrical resistance (> 1000
Θ) at 4–5 d of primary culture. At the same time interval, transmission electron microscopy revealed cells with type I cell-like
morphology throughout the monolayer. These were characterized by both adherens and tight junctional attachments. Fluid flux
across the monolayers was measured volumetrically over a period of 2 h in the presence of HEPES-buffered DMEM containing 3%
fatty acid-free bovine serum albumin. Flux (Jv) was inhibited 39% by 1 × 10−4
M ouabain (P < 0.01) and 27% by 5 × 10−4
M amiloride (P < 0.05). These data support the concept that AEC Na+/K+-ATPase and Na+ transport systems are important determinants of AEC transepithelial fluid movement in vitro. 相似文献