首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.  相似文献   

2.
The role of substrate availability in the regulation of gluconeogenesis in isolated rat hepatocytes was studied using [U-14C]alanine as a tracer in the presence of different concentrations of L-alanine in the incubation medium. At low alanine concentrations (0.5 mM) insulin decreased the 14C incorporation into the glucose pool and increased the incorporation of tracer carbons into the protein and lipid pools and into CO2. The net radioactivity lost from the glucose pool was only a small percentage of the total increase in the activity of the protein, lipid, CO2, or glycogen pools, supporting the notion that the effect of insulin in diminishing gluconeogenesis is secondary to its effects on pathways using pyruvate. At higher concentrations of alanine (2.5, 5.0, and 10.0 mM) in the incubation medium insulin increased the movement of alanine carbons into protein and glucose. This suggests that at higher substrate concentrations the ability of the liver to synthesize proteins is overwhelmed and the pyruvate carbons are forced into the gluconeogenesis pathway. These results were further confirmed by using [U-14C]lactate. The increases in observed specific activity of glucose following insulin administration would not be possible if insulin acted by affecting the activity of any enzyme directly involved in the formation or utilization of pyruvate, most of which have been proposed as sites of insulin action. Data presented show that insulin "inhibits" gluconeogenesis by affecting a change in substrate availability.  相似文献   

3.
In parenchymal liver cells isolated from fed rats, insulin increased the formation of 14CO2 from [1-14C]pyruvate (and presumably the flux through pyruvate dehydrogenase) by 14%. Dichloroacetate, an activator of the pyruvate dehydrogenase complex, stimulated this process by 133%. As judged from the conversion of [2-14C]pyruvate to 14CO2, the tricarboxylic acid cycle activity was not affected by insulin, but it was depressed by dichloroacetate. In hepatocytes from fed rats, incubated with glucose as the only carbon source, dichloroacetate caused a stimulation (31%) of fatty acid synthesis, measured as 3H incorporation from 3H2O into fatty acid, and an increased (134%) accumulation of ketone bodies (acetoacetate + D-3-hydroxybutyrate). Dichloroacetate did not affect ketone body formation from [14C]palmitate, suggesting that the increased accumulation of ketone bodies resulted from acetyl-CoA derived from pyruvate. Insulin stimulated fatty acid synthesis in hepatocytes from fed rats. In the combined presence of insulin plus dichloroacetate, fatty acid synthesis was more rapid than in the presence of either insulin or dichloroacetate, whereas the accumulation of ketone bodies was smaller than in the presence of dichloroacetate alone. Although pyruvate dehydrogenase activity, which is rate-limiting for fatty acid synthesis in hepatocytes from fed rats, is stimulated both by insulin and by dichloroacetate, the reciprocal changes in fatty acid synthesis and ketone body accumulation brought about by insulin in the presence of dichloroacetate suggest that insulin is also involved in the regulation of fatty acid synthesis at a mitochondrial site after pyruvate dehydrogenase, possibly at the partitioning of acetyl-CoA between citrate and ketone body formation.  相似文献   

4.
1. Phosphate-dependent glutaminase activity in the epididymal fat-pad was 15.1 nmol/min per mg of protein. Glutaminase activity demonstrated differences with respect to adipose-tissue sites. Considerable variation was found in different sites of adipose tissue from lean control and Zucker obese animals. 2. Adipocytes incubated in the presence of 2 mM-glutamine utilized glutamine at a rate of 1.8 mumol/h per g dry wt., and glutamate, ammonia, lactate and alanine were produced. Addition of glucose plus insulin increased the rates of glutamine utilization and glutamate, ammonia, lactate and alanine production. Isoprenaline alone or plus glucose further stimulated the rate of glutamine utilization and formation of end products. 3. The rate of incorporation of 14C from glutamine into CO2 was similar to that of glucose, but the rate of incorporation into triacylglycerol was much less. Addition of unlabelled glucose or glucose plus insulin stimulated the rate of incorporation of [14C]glutamine into triacylglycerol, but had no effect on that of 14CO2 formation. Isoprenaline plus glucose increased the rate of incorporation of [14C]glutamine into CO2, but decreased the rate of incorporation into triacylglycerol. 4. In the absence of insulin, the rate of [14C]glutamine incorporation into triacylglycerol was related to the glucose concentration (0-10 mM). However, in the presence of insulin, the rate of incorporation of [14C]glutamine was maximal at 1 mM-glucose.  相似文献   

5.
Feeding lactating rats on high-fat cheese crackers in addition to laboratory chow increased the dietary intake of fat from 2 to 20% of the total weight of food eaten and decreased mammary-gland lipogenesis in vivo by approx. 50%. This lipogenic inhibition was also observed in isolated mammary acini, where it was accompanied by decreased glucose uptake. These inhibitions were completely reversed by incubation with insulin. Insulin had no effect on the rate of glucose transport into acini, nor on pyruvate dehydrogenase activity as estimated by the accumulation of pyruvate and lactate, suggesting that these are not the sites of lipogenic inhibition. Insulin stimulated the incorporation of [1-14C]acetate into lipid in acini from high-fat-fed rats. In the presence of alpha-cyanohydroxycinnamate, a potent inhibitor of mitochondrial pyruvate transport, and with glucose as the sole substrate, neither [1-14C]glucose incorporation into lipid nor glucose uptake were stimulated by insulin. Insulin did stimulate the incorporation of [1-14C]acetate into lipid in the presence of alpha-cyanohydroxycinnamate, and this was accompanied by an increase in glucose uptake by the acini. This indicated that increased glucose uptake was secondary to the stimulation of lipogenesis by insulin, which therefore must occur via activation of a step in the pathway distal to mitochondrial pyruvate transport. Insulin stimulated acetyl-CoA carboxylase activity measured in crude extracts of acini from high-fat-fed rats, restoring it to values close to those of chow-fed controls. The effects of insulin on acetyl-CoA carboxylase activity and lipogenesis were not antagonized by adrenaline or dibutyryl cyclic AMP.  相似文献   

6.
1. Utilization of 5mM-glucose by slices of lactating mammary gland was decreased 33% on addition of acetoacetate (2mM) to the incubation medium. This inhibition was accompanied by increases in the intracellular concentrations of citrate and glucose 6-phosphate. 2. In the presence of acetoacetates the accumulation of pyruvate in the medium approximately doubled. 3. Insulin completely reversed the inhibitory effect of acetoacetates on glucose utilization, without altering the amount of acetoacetate removed or pyruvate formed. 4. Similar results were obtained with mammary-gland slices from diabetic rats, except that insulin did not completely reverse the effects of acetoacetates. 5. Acetoacetate inhibited the formation of 14CO2 from [1-14C]pyruvate; this effect was not overcome by insulin. 6. Insulin increased the proportion of [3-14C]acetoacetate that was converted into lipid and decreased that oxidized to CO2.7. The physiological significance of these findings is discussed.  相似文献   

7.
1. When rat isolated fat-cells were incubated with fructose and palmitate, insulin significantly stimulated glyceride synthesis as measured by either [14C]fructose incorporation into the glycerol moiety or of [3H]palmitate incorporation into the acyl moiety of tissue glycerides. Under certain conditions the effect of insulin on glyceride synthesis was greater than the effect of insulin on fructose uptake. 2. In the presence of palmitate, insulin slightly stimulated (a) [14C]pyruvate incorporation into glyceride glycerol of fat-cells and (b) 3H2O incorporation into glyceride glycerol of incubated fat-pads. 3. At low extracellular total concentrations of fatty acids (in the presence of albumin), insulin stimulated [14C]fructose, [14C]pyruvate and 3H2O incorporation into fat-cell fatty acids. Increasing the extracellular fatty acid concentration greatly inhibited fatty acid synthesis from these precursors and also greatly decreased the extent of apparent stimulation of fatty acid synthesis by insulin. 4. These results are discussed in relation to the suggestion [A.P. Halestrap & R.M.Denton (1974) Biochem. J. 142, 365-377] that the tissue may contain a specific acyl-binding protein which is subject to regulation. It is suggested that an insulin-sensitive enzyme component of the glyceride-synthesis process may play such a role.  相似文献   

8.
The acute effects of injections of the human growth hormone-like factor purified from plerocercoids of the tapeworm Spirometra mansonoides on carbohydrate, lipid, and protein metabolisms were determined in intact rats. Male rats were injected ip with saline, insulin, or various doses of partially purified PGF. The rats injected with insulin had significantly reduced serum glucose concentrations but no dose of PGF caused a change in serum glucose levels. Insulin and PGF stimulated [14C]glucose and [14C]leucine oxidation to 14CO2 in adipose tissue and muscle and increased incorporation of both [14C]glucose carbons into lipids and [14C]leucine into protein in fat and muscle. The responses to PGF were dose-dependent and persisted after 3 hr of incubation in vitro. Injections of naloxone prior to injecting PGF to block the stress response did not prevent the stimulation of insulin-like responses by PGF. Therefore, PGF has intrinsic insulin-like activities in normal male rats.  相似文献   

9.
Oxidation of [2,3-14C]succinate carbons in the mitochondrial Krebs cycle was used as a probe to investigate the effects of insulin, epinephrine, glucagon, and 2,4-dinitrophenol (2,4-DNP) on isolated rat hepatocytes. Epinephrine, glucagon, and 2,4-DNP had a far greater stimulatory effect on 14CO2 formation from [2,3-14C]succinate than insulin. Unlike insulin, epinephrine and glucagon had no significant effect on the anabolic utilization of succinate carbons for protein synthesis. Our results suggest that although epinephrine, glucagon, and 2,4-DNP enhance the movement of tracer carbons through the Krebs cycle, only insulin is capable of enhancing amphibolite utilization for protein synthesis.  相似文献   

10.
Oxidation of [2,3-14C]succinate in the intramitochondrial Krebs cycle was used as a probe to investigate the effect of ammonia on protein incorporation and Krebs cycle oxidation of succinate carbons in isolated rat hepatocytes. At low concentrations of ammonium chloride (0.1 to 0.5 mM) a slight increase in14CO2 formation from [2,3-14C]succinate was observed, however, the stimulatory effect of insulin was significantly reduced. Insulin failed to cause any stimulation of succinate carbons incorporation into hepatocyte protein in the presence of ammonium chloride. Addition of ammonium chloride also depressed the movement of tracer carbons into the gluconeogenesis pathway. The activity of the amphibolic amino acid pool was significantly enhanced by ammonia. The data presented in this paper lend strong support to the Krebs-cycle depletion theory of hepatic coma. They also suggest that reduced mitochondrial Krebs cycle activity caused by increased amphibolic depletion of substrates results in loss of insulin sensitivity in ammonia toxicity.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

11.
1. The metabolic pattern of [U-(14)C]glucose in the isolated rat heart has been studied, with both retrograde aortic (Langendorff) and atrially (working) perfused preparations in the presence and absence of insulin, in normal animals, animals rendered insulin-deficient (by injection of anti-insulin serum 1hr. before excision of the heart) and animals rendered diabetic by streptozotocin injection 7 days before use. 2. Radioautochromatograms of heart extracts show that the pattern of glucose metabolism in heart muscle is more complex than in diaphragm muscle. In addition to (14)CO(2), glycogen, oligosaccharides, phosphorylated sugars and lactate (the main metabolites formed from [(14)C]glucose in diaphragm muscle), (14)C label from [(14)C]glucose appears in heart muscle in glutamate, glutamine, aspartate and alanine, and in tricarboxylic acid-cycle intermediates. 3. By a quantitative scanning technique of two-dimensional chromatograms it was found that a mechanical work load stimulates glucose metabolism, increasing by a factor of 2-3 incorporation of (14)C into all the metabolites mentioned above except lactate and phosphorylated sugars, into which (14)C incorporation is in fact diminished; (14)CO(2) production is equally stimulated. 4. Addition of insulin to the perfusion fluid of the working heart causes increases in (14)C incorporation, by a factor of about 1.5 into (14)CO(2), by a factor of about 3-5 into glycogen, lactate and phosphorylated sugars, by a factor of about 2-3 into glutamate and tricarboxylic acid-cycle intermediates and by a factor of about 0.5 into aspartate, whereas incorporation into alanine and glutamine is not affected. The effect of a work load on the pattern of glucose metabolism is thus different from that of insulin. 5. Increasing the concentration of glucose in the perfusion fluid from 1 to 20mm leads to changes of the pattern of glucose metabolism different from that brought about by insulin. (14)CO(2) production steadily increases whereas [(14)C]lactate and glycogen production levels off at 10mm-glucose, at values well below those reached in the presence of insulin. 6. In Langendorff hearts of animals rendered insulin-deficient by anti-insulin serum or streptozotocin, glucose uptake, formation of (14)CO(2) and [(14)C]lactate, and (14)C incorporation into glycogen and oligosaccharides are decreased. In insulin-deficient working hearts, however, glucose uptake and (14)CO(2) production are normal, whereas incorporation of (14)C into glycogen and [(14)C]lactate production are greatly decreased. 7. Insulin added to the perfusion fluid restores (14)C incorporation from glucose into (14)CO(2), glycogen and lactate in the Langendorff heart from animals rendered insulin-deficient by anti-insulin serum; in hearts from streptozotocin-diabetic animals addition of insulin restores (14)C incorporation into glycogen and lactate, but (14)CO(2) production remains about 50% below normal. 8. The bearing of these results on the problem of the mode of action of insulin is discussed.  相似文献   

12.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

13.
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.  相似文献   

14.
Insulin action on [32P]-phosphate incorporation into brain membranes was determined. Hippocampal homogenate tissue was phosphorylated with [32P]-ATP, and insulin was introduced at various times before or after ATP addition. With 50 microM Mg++ in the medium, insulin selectively stimulated the phosphorylation of a 47kD phosphoprotein, Protein F1. This effect required the prior presence of ATP. No effect of insulin on other phosphoproteins, or on [32P]-phosphate incorporation into TCA-precipitated material, was observed under these conditions. At 1 mM Mg++, insulin selectively decreased the phosphorylation of the alpha-subunit of pyruvate dehydrogenase. Insulin had no effect on other phosphoproteins, or on [32P]-phosphate incorporation into TCA-precipitated material under these conditions. The present study suggests a role for insulin in the modulation of brain protein phosphorylation. Since Protein F1 is phosphorylated by exogenous C kinase, and is likely the CNS-specific B-50 protein, these data also indicate a brain-specific function for insulin, possibly by action on a Ca++/phospholipid protein kinase.  相似文献   

15.
Inhibition of glucose uptake by acetoacetate and relief of this inhibition by insulin found previously in slices of rat mammary gland [Williamson, McKeown & Ilic (1975) Biochem. J. 150. 145-152] was confirmed in acini, which represent a more homogeneous population of cells. Glycerol (1mM) behaved like insulin (50 minuits/ml) in its ability to relieve the inhibition of glucose (5 mM) utilization caused by acetoacetate (2 mM) in acini. Both glycerol and insulin reversed the increase in [citrate] and the decrease in [glycerol 3-phosphate] and the [lactate]/[pyruvate] ratio in the presence of acetoacetate. Lipogenesis from 3H2O, [3-14C] acetoacetate, [1-14C]- and [6-14C]-glucose was stimulated, whereas 14CO2 formation from [3-14C]acetoacetate was decreased. Neither insulin nor glycerol relieved the acetoacetate inhibition of glucose uptake when lipogenesis was inhibited by 5-(tetradecyloxy)-2-furoic acid. From measurements of [3-14C]acetoacetate incorporation into lipid in the various situations it is suggested that a cytosolic pathway for acetoacetate utilization may exist in rat mammary gland. In the absence of acetoacetate, glycerol inhibited glucose utilization by 60% and increased both [glycerol 3-phosphate] and the [lactate/[pyruvate] ratio. Possible ways in which glycerol may mimic the effects of insulin are discussed.  相似文献   

16.
The effects of insulin, cortisol and prolactin on amino acid uptake and protein biosynthesis were determined in mammary-gland explants from mid-pregnant mice. Insulin stimulated [3H]leucine incorporation into protein within 15 min of adding insulin to the incubation medium. Insulin also had a rapid stimulatory effect on the rate of aminoiso[14C]butyric acid uptake, but it had no effect on the intracellular accumulation of [3H]leucine. Cortisol inhibited the rate of [3H]leucine incorporation into protein during the initial 4h of incubation, but it had no effect at subsequent times. [3H]Leucine uptake was unaffected by cortisol, but amino[14C]isobutyric acid uptake was inhibited after a 4h exposure period to this hormone. Prolactin stimulated the rate of [3H]leucine incorporation into protein when tissues were exposed to this hormone for 4h or more; up to 4h, however, no effect of prolactin was detected. At all times tested, prolactin had no effect on the uptake of either amino[14C]isobutyric acid or [3H]leucine. Incubation with actinomycin D abolished the prolactin stimulation of protein biosynthesis, but this antibiotic did not affect the insulin response. A distinct difference in the mechanism of action of these hormones on protein biosynthesis in the mammary gland is thus apparent.  相似文献   

17.
It has been a generally held view that insulin does not significantly affect the incorporation of amino acids into liver protein. This interpretation was based on data obtained from studies using the branched chain amino acids, which are poorly metabolized by the hepatic tissue. The effect of insulin on 14CO2 formation and protein incorporation of several 1-14C-labeled or U-14C-labeled amino acids was studied in isolated rat hepatocytes and diaphragm pieces. It was shown that insulin enhanced 14CO2 formation and protein incorporation primarily of those carbons of amino acids which are metabolized through the mitochondrial Krebs cycle. Using aminooxyacetic acid (0.5 mM), a potent inhibitor of the transamination reaction, it was shown that there exists an "insulin-sensitive" pool of glutamate which is preferentially utilized for protein synthesis in the presence of insulin. The insulin effect on protein incorporation of 14C-labeled glutamate generated in the Krebs cycle was abolished in the presence of aminooxyacetic acid. We interpret these results to signify that mitochondrial transamination of alpha-ketoglutarate to glutamate is essential for insulin stimulation of 14C incorporation into hepatocyte protein.  相似文献   

18.
Insulin was found to double the rate of incorporation of H14CO3- into protein by segments of rat epididymal adipose tissue provided the incubation medium contained a suitable energy substrate such as fructose. Overall protein synthesis was increased by insulin to a lesser extent, one-third as measured by tritiated water indicating that insulin also increased CO2 fixation into amino acids. The latter could be demonstrated only when the tissue amino acid pools were expanded by the addition of aspartate to the incubation medium. The pattern of labeling observed in the amino acids indicated that CO2 fixation occurred primarily at the pyruvate carboxylase step. Addition of pyruvate to the incubation medium also increased CO2 fixation and this effect was not additive with that of insulin, suggesting that insulin acted by increasing the availability of pyruvate to the carboxylase. No change in carboxylase activity could be measured. Mitochondria isolated from tissue exposed to insulin retained a higher capacity to fix CO2 into acid-soluble products provided they were not freeze-thawed or sonicated. Uptake of pyruvate by mitochondria incubated 1 min at 2 degrees C or 5 s at 15 degrees C was doubled by prior insulin treatment of the tissue. It is concluded that insulin increases the flux through pyruvate carboxylase in adipose tissue in part by increasing the transport of pyruvate through the inner mitochondrial membrane.  相似文献   

19.
The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TCA-cycle-related pathways. Results of this study indicated that the ratio of 14CO2 produced from [1,4-14C]succinate to 14CO2 produced from [2,3-14C]succinate was increased by the addition of glutamine (5 mM) to the medium. An increase in the succinate CO2 ratio is quantitatively related to an increased flux of unlabelled carbon into the TCA-cycle-intermediate pools. Analysis of 14C distribution in [14C]citrate derived from [2,3-14C]succinate indicated that flux from the TCA cycle to the acetyl-CoA-derived carbons of citrate was insignificant. Thus the increased succinate CO2 ratio observed in the presence of glutamine could only result from an increased flux of carbon into the span of the TCA cycle from citrate to oxaloacetate. This result is consistent with increased flux of glutamine to alpha-oxoglutarate in the incubation medium containing exogenous glutamine. Comparison of the pyruvate CO2 ratio, steady-state 14CO2 production from [2-14C]pyruvate versus [3-14C]pyruvate, with the succinate 14CO2 ratio detected flux of pyruvate to C4 TCA-cycle intermediates in the medium containing glutamine. This result was consistent with the observation that [14C]aspartate derived from [2-14C]pyruvate was labelled in C-2 and C-3. 14C analysis also produced evidence for flux of TCA-cycle carbon to alanine. This study demonstrates that the CO2-ratios method is applicable in the analysis of the metabolic properties of AS-30D cells. This methodology has verified that the atypical TCA-cycle metabolism previously described for AS-30D-cell mitochondria occurs in intact AS-30D rat hepatoma cells.  相似文献   

20.
1. The activities of pyruvate dehydrogenase in rat lymphocytes and mouse macrophages are much lower than those of the key enzymes of glycolysis and glutaminolysis. However, the rates of utilization of pyruvate (at 2 mM), from the incubation medium, are not markedly lower than the rate of utilization of glucose by incubated lymphocytes or that of glutamine by incubated macrophages. This suggests that the low rate of oxidation of pyruvate produced from either glucose or glutamine in these cells is due to the high capacity of lactate dehydrogenase, which competes with pyruvate dehydrogenase for pyruvate. 2. Incubation of either macrophages or lymphocytes with dichloroacetate had no effect on the activity of subsequently isolated pyruvate dehydrogenase; incubation of mitochondria isolated from lymphocytes with dichloroacetate had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, and the double-reciprocal plot of [1-14C]pyruvate concentration against rate of 14CO2 production was linear. In contrast, ADP or an uncoupling agent increased the rate of 14CO2 production from [1-14C]pyruvate by isolated lymphocyte mitochondria. These data suggest either that pyruvate dehydrogenase is primarily in the a form or that pyruvate dehydrogenase in these cells is not controlled by an interconversion cycle, but by end-product inhibition by NADH and/or acetyl-CoA. 3. The rate of conversion of [3-14C]pyruvate into CO2 was about 15% of that from [1-14C]pyruvate in isolated lymphocytes, but was only 1% in isolated lymphocyte mitochondria. The inhibitor of mitochondrial pyruvate transport, alpha-cyano-4-hydroxycinnamate, inhibited both [1-14C]- and [3-14C]-pyruvate conversion into 14CO2 to the same extent, and by more than 80%. 4. Incubations of rat lymphocytes with concanavalin A had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, but increased the rate of conversion of [3-14C]pyruvate into 14CO2 by about 50%. This suggests that this mitogen causes a stimulation of the activity of pyruvate carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号