首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The triplex of herpesvirus capsids is a unique structural element. In herpes simplex virus type 1 (HSV-1), one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent VP5 molecules. The interaction between VP19C and VP23 was inferred by yeast cryoelectron microscopy studies and subsequently confirmed by the two-hybrid assay. In order to define the functional domains of VP19C and VP23, a Tn7-based transposon was used to randomly insert 15 bp into the coding regions of these two proteins. The mutants were initially screened for interaction in the yeast two-hybrid assay to identify the domains important for triplex formation. Using genetic complementation assays in HSV-1-infected cells, the domains of each protein required for virus replication were similarly uncovered. The same mutations that abolish interaction between these two proteins in the yeast two-hybrid assay similarly failed to complement the growth of the VP23- and VP19C-null mutant viruses in the genetic complementation assay. Some of these mutants were transferred into recombinant baculoviruses to analyze the effect of the mutations on herpesvirus capsid assembly in insect cells. The mutations that abolished the interaction in the yeast two-hybrid assay also abolished capsid assembly in insect cells. The outcome of these experiments showed that insertions in at least four regions and especially the amino terminus of VP23 abolished function, whereas the amino terminus of VP19C can tolerate transposon insertions. A novel finding of these studies was the ability to assemble herpesvirus capsids in insect cells using VP5 and VP19C that contained a histidine handle at their amino terminus.  相似文献   

2.
The group A rotaviruses are composed of at least seven serotypes. Serotype specificity is defined mainly by an outer capsid protein, VP7. In contrast, the other surface protein, VP3 (775 amino acids), appears to be associated with both serotype-specific and heterotypic immunity. To identify the cross-reactive and serotype-specific neutralization epitopes on VP3 of human rotavirus, we sequenced the VP3 gene of antigenic mutants resistant to each of seven anti-VP3 neutralizing monoclonal antibodies (N-MAbs) which exhibited heterotypic or serotype 2-specific reactivity, and we defined three distinct neutralization epitopes on VP3. The mutants sustained single amino acid substitutions at position 305, 392, 433, or 439. Amino acid position 305 was critical to epitope I, whereas amino acid position 433 was critical to epitope III. In contrast, epitope II appeared to be more dependent upon conformation and protein folding because both amino acid positions 392 and 439 appeared to be critical. These four positions clustered in a relatively limited area of VP5, the larger of the two cleavage products of VP3. At the positions where amino acid substitutions occurred, there was a correlation between amino acid sequence homology among different serotypes and the reactivity patterns of various viruses with the N-MAbs used for selection of mutants. A synthetic peptide (amino acids 296 to 313) which included the sequence of epitope I reacted with its corresponding N-MAb, suggesting that the region contains a sequential antigenic determinant. These data may prove useful in current efforts to develop vaccines against human rotavirus infection.  相似文献   

3.
In this study, we identified a region in the human parvovirus structural protein which involves the neutralization of the virus by a monoclonal antibody and site-specific synthetic peptides. A newly established monoclonal antibody reacted with both viral capsid proteins VP1 and VP2. The epitope was found in six strains of independently isolated human parvovirus B19. The monoclonal antibody could protect colony-forming unit erythroid in human bone marrow cell culture from injury by the virus. The monoclonal antibody reacted with only 1 of 12 peptides that were synthesized according to a predicted amino acid sequence based on nucleotide sequences of the coding region for the structural protein of B19 virus. The sequence recognized by the antibody was a site corresponding to amino acids 328 to 344 from the amino-terminal portion of VP2. This evidence suggests that the epitope of the viral capsid protein is located on the surface of the virus and may be recognized by virus-neutralizing antibodies.  相似文献   

4.
Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be beta-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag insertions identified several other regions that were on the surface of the capsid. These included insertions at amino acids 1, 34, 138, 266, 447, 591, and 664. Positions 1 and 138 were the N termini of VP1 and VP2, respectively; position 34 was exclusively in VP1; the remaining surface positions were located in putative loop regions of VP3. The remaining mutants, most of them partially defective, were presumably defective in steps of viral entry that were not tested in the preliminary screening, including intracellular trafficking, viral uncoating, or coreceptor binding. Finally, in vitro experiments showed that insertion of the serpin receptor ligand in the N-terminal regions of VP1 or VP2 can change the tropism of AAV. Our results provide information on AAV capsid functional domains and are useful for future design of AAV vectors for targeting of specific tissues.  相似文献   

5.
Rotaviruses are the leading cause of severe infantile gastroenteritis worldwide. These viruses are large, complex icosahedral particles consisting of three concentric capsid layers enclosing a genome of eleven segments of double-stranded RNA (dsRNA). The amino terminus of the innermost capsid protein VP2 possesses a nonspecific single-stranded RNA and dsRNA binding activity, and the amino terminus is also essential for the incorporation of the polymerase enzyme VP1 and guanylyltransferase VP3 into the core of the virion. Biochemical and structural studies have suggested that VP2, and especially the amino terminus, appears to act as a scaffold for proper assembly of the components of the viral core. To locate the amino terminus of VP2 within the core, we have used electron cryomicroscopy and image reconstruction to determine the three-dimensional structures of recombinant virus-like particles that contain either full-length or amino-terminal-deleted forms of VP2 coexpressed with the intermediate capsid protein VP6. A comparison of these structures indicates two significant changes along the inner surface of VP2 in the structure lacking the amino terminus: a loss of mass adjacent to the fivefold axes and a redistribution of mass along the fivefold axes. Examination of the VP2 layer suggests that the proteins are arranged as dimers of 120 quasi-equivalent molecules, with each dimer extending between neighboring fivefold axes. Our results indicate that the amino termini of both quasi-equivalent VP2 molecules are located near the icosahedral vertices.  相似文献   

6.
Adeno-associated virus (AAV) capsid assembly requires expression of the assembly-activating protein (AAP) together with capsid proteins VP1, VP2, and VP3. AAP is encoded by an alternative open reading frame of the cap gene. Sequence analysis and site-directed mutagenesis revealed that AAP contains two hydrophobic domains in the N-terminal part of the molecule that are essential for its assembly-promoting activity. Mutation of these sequences reduced the interaction of AAP with the capsid proteins. Deletions and a point mutation in the capsid protein C terminus also abolished capsid assembly and strongly reduced the interaction with AAP. Interpretation of these observations on a structural basis suggests an interaction of AAP with the VP C terminus, which forms the capsid protein interface at the 2-fold symmetry axis. This interpretation is supported by a decrease in the interaction of monoclonal antibody B1 with VP3 under nondenaturing conditions in the presence of AAP, indicative of steric hindrance of B1 binding to its C-terminal epitope by AAP. In addition, AAP forms high-molecular-weight oligomers and changes the conformation of nonassembled VP molecules as detected by conformation-sensitive monoclonal antibodies A20 and C37. Combined, these observations suggest a possible scaffolding activity of AAP in the AAV capsid assembly reaction.  相似文献   

7.
Hepatitis E virus (HEV) is a human pathogen that causes acute hepatitis. When an HEV capsid protein containing a 52-amino-acid deletion at the C terminus and a 111-amino-acid deletion at the N terminus is expressed in insect cells, the recombinant HEV capsid protein can self-assemble into a T=1 virus-like particle (VLP) that retains the antigenicity of the native HEV virion. In this study, we used cryoelectron microscopy and image reconstruction to show that anti-HEV monoclonal antibodies bind to the protruding domain of the capsid protein at the lateral side of the spikes. Molecular docking of the HEV VLP crystal structure revealed that Fab224 covered three surface loops of the recombinant truncated second open reading frame (ORF2) protein (PORF2) at the top part of the spike. We also determined the structure of a chimeric HEV VLP and located the inserted B-cell tag, an epitope of 11 amino acids coupled to the C-terminal end of the recombinant ORF2 protein. The binding site of Fab224 appeared to be distinct from the location of the inserted B-cell tag, suggesting that the chimeric VLP could elicit immunity against both HEV and an inserted foreign epitope. Therefore, the T=1 HEV VLP is a novel delivery system for displaying foreign epitopes at the VLP surface in order to induce antibodies against both HEV and the inserted epitope.  相似文献   

8.
Using nuclease Bal31, deletions were generated within the poliovirus type 1 cDNA sequences, coding for capsid polypeptide VP1, within plasmid pCW119. The fusion proteins expressed in Escherichia coli by the deleted plasmids reacted with rabbit immune sera directed against poliovirus capsid polypeptide VP1 (alpha VP1 antibodies). They also reacted with a poliovirus type 1 neutralizing monoclonal antibody C3, but reactivity was lost when the deletion extended up to VP1 amino acids 90-104. Computer analysis of the protein revealed a high local density of hydrophilic amino acid residues in the region of VP1 amino acids 93-103. A peptide representing the sequence of this region was chemically synthesized. Once coupled to keyhole limpet hemocyanin, this peptide was specifically immunoprecipitated by C3 antibodies. The peptide also inhibited the neutralization of poliovirus type 1 by C3 antibodies. We thus conclude that the neutralization epitope recognized by C3 is located within the region of amino acids 93-104 of capsid polypeptide VP1.  相似文献   

9.
The herpesvirus triplex is a key structural feature of the capsids of these viruses. It is composed of a hetero-trimer of one molecule of VP19C and two molecules of VP23. It acts to stabilize capsid shells by connecting the capsomeric subunits together. Although it has been possible to over-express in Escherichia coli and purify one component of the triplex, VP23; this has not been the case with VP19C. Because an N-terminal polypeptide of VP19C could be expressed and purified using a GST affinity tag, a directed mutagenic approach was used to determine the region of VP19C that caused the block in expression of the full-length protein. The region was mapped to reside between VP19C amino acids 145 and 150 using truncation gene fusions and subsequently a single amino acid, R146 was identified which when changed to alanine, allowed stable expression and accumulation of VP19C. This change does not affect the biological function of VP19C. Finally using this altered VP19C, co-expression of the triplex proteins in the same cell has been achieved making it now possible to purify this complex for biophysical and structural studies.  相似文献   

10.
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.  相似文献   

11.
Viruses need only one or a few structural capsid proteins to build an infectious particle. This is possible through the extensive use of symmetry and the conformational polymorphism of the structural proteins. Using virus-like particles (VLP) from rabbit hemorrhagic disease virus (RHDV) as a model, we addressed the basis of calicivirus capsid assembly and their application in vaccine design. The RHDV capsid is based on a T=3 lattice containing 180 identical subunits (VP1). We determined the structure of RHDV VLP to 8.0-Å resolution by three-dimensional cryoelectron microscopy; in addition, we used San Miguel sea lion virus (SMSV) and feline calicivirus (FCV) capsid subunit structures to establish the backbone structure of VP1 by homology modeling and flexible docking analysis. Based on the three-domain VP1 model, several insertion mutants were designed to validate the VP1 pseudoatomic model, and foreign epitopes were placed at the N- or C-terminal end, as well as in an exposed loop on the capsid surface. We selected a set of T and B cell epitopes of various lengths derived from viral and eukaryotic origins. Structural analysis of these chimeric capsids further validates the VP1 model to design new chimeras. Whereas most insertions are well tolerated, VP1 with an FCV capsid protein-neutralizing epitope at the N terminus assembled into mixtures of T=3 and larger T=4 capsids. The calicivirus capsid protein, and perhaps that of many other viruses, thus can encode polymorphism modulators that are not anticipated from the plane sequence, with important implications for understanding virus assembly and evolution.  相似文献   

12.
We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.  相似文献   

13.
Recent studies have suggested that the herpes simplex type 1 (HSV-1) UL25 gene product, a minor capsid protein, is required for encapsidation but not cleavage of replicated viral DNA. This study set out to investigate the potential interactions of UL25 protein with other virus proteins and determine what properties it has for playing a role in DNA encapsidation. The UL25 protein is found in 42 +/- 17 copies per B capsid and is present in both pentons and hexons. We introduced green fluorescent protein (GFP) as a fluorescent tag into the N terminus of UL25 protein to identify its location in HSV-1-infected cells and demonstrated the relocation of UL25 protein from the cytoplasm into the nucleus at the late stage of HSV-1 infection. To clarify the cause of this relocation, we analyzed the interactions of UL25 protein with other virus proteins. The UL25 protein associates with VP5 and VP19C of virus capsids, especially of the penton structures, and the association with VP19C causes its relocation into the nucleus. Gel mobility shift analysis shows that UL25 protein has the potential to bind DNA. Moreover, the amino-terminal one-third of the UL25 protein is particularly important in DNA binding and forms a homo-oligomer. In conclusion, the UL25 gene product forms a tight connection with the capsid being linked with VP5 and VP19C, and it may play a role in anchoring the genomic DNA.  相似文献   

14.
《Gene》1997,191(2):191-195
We have designed a series of vectors for use in the fission yeast Schizosaccharomyces pombe that allow fusion of any protein of interest to a triple HA epitope or a GST domain. The HA epitope may be placed at the N terminus or the C terminus under three different versions of the nmt1 promoter, to allow varying levels of gene expression. The GST tag may be placed at the N terminus or C terminus under control of a fully active nmt1 promoter. This family of vectors has compatible restriction sites and modular design, so that the protein under study may be exchanged easily between different plasmids. Using the Cdc19p protein as a test case, we have demonstrated that these plasmids can express functional tagged proteins in the fission yeast cell.  相似文献   

15.
Protein-protein interactions drive the assembly of the herpes simplex virus type 1 (HSV-1) capsid. A key interaction occurs between the C-terminal tail of the scaffold protein (pre-22a) and the major capsid protein (VP5). Previously (Z. Hong, M. Beaudet-Miller, J. Durkin, R. Zhang, and A. D. Kwong, J. Virol. 70:533-540, 1996) it was shown that the minimal domain in the scaffold protein necessary for this interaction was composed of a hydrophobic amphipathic helix. The goal of this study was to identify the hydrophobic residues in VP5 important for this bimolecular interaction. Results from the genetic analysis of second-site revertant virus mutants identified the importance of the N terminus of VP5 for the interaction with the scaffold protein. This allowed us to focus our efforts on a small region of this large polypeptide. Twenty-four hydrophobic residues, starting at L23 and ending at F84, were mutated to alanine. All the mutants were first screened for interaction with pre-22a in the yeast two-hybrid assay. From this in vitro assay, seven residues, I27, L35, F39, L58, L65, L67, and L71, that eliminated the interaction when mutated were identified. All 24 mutants were introduced into the virus genome with a genetic marker rescue/marker transfer system. For this system, viruses and cell lines that greatly facilitated the introduction of the mutants into the genome were made. The same seven mutants that abolished interaction of VP5 with pre-22a resulted in an absolute requirement for wild-type VP5 for growth of the viruses. The viruses encoding these mutations in VP5 were capable of forming capsid shells comprised of VP5, VP19C, VP23, and VP26, but the closure of these shells into an icosahedral structure was prevented. Mutation at L75 did not affect the ability of this protein to interact with pre-22a, as judged from the in vitro assay, but this mutation specified a lethal effect for virus growth and abolished the formation of any detectable assembled structure. Thus, it appears that the L75 residue is important for another essential interaction of VP5 with the capsid shell proteins. The congruence of the data from the previous and present studies demonstrates the key roles of two regions in the N terminus of this large protein that are crucial for this bimolecular interaction. Thus, residues I27, L35, and F39 comprise the first subdomain and residues L58, L65, L67 and L71 comprise a second subdomain of VP5. These seven hydrophobic residues are important for the interaction of VP5 with the scaffold protein and consequently the formation of an icosahedral shell structure that encloses the viral genome.  相似文献   

16.
The unique N-terminal region of the parvovirus VP1 capsid protein is required for infectivity by the capsids but is not required for capsid assembly. The VP1 N terminus contains a number of groups of basic amino acids which resemble classical nuclear localization sequences, including a conserved sequence near the N terminus comprised of four basic amino acids, which in a peptide can act to transport other proteins into the cell nucleus. Testing with a monoclonal antibody recognizing residues 2 to 13 of VP1 (anti-VP1-2-13) and with a rabbit polyclonal serum against the entire VP1 unique region showed that the VP1 unique region was not exposed on purified capsids but that it became exposed after treatment of the capsids with heat (55 to 75 degrees C), or urea (3 to 5 M). A high concentration of anti-VP1-2-13 neutralized canine parvovirus (CPV) when it was incubated with the virus prior to inoculation of cells. Both antibodies blocked infection when injected into cells prior to virus inoculation, but neither prevented infection by coinjected infectious plasmid DNA. The VP1 unique region could be detected 4 and 8 h after the virus capsids were injected into cells, and that sequence exposure appeared to be correlated with nuclear transport of the capsids. To examine the role of the VP1 N terminus in infection, we altered that sequence in CPV, and some of those changes made the capsids inefficient at cell infection.  相似文献   

17.
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease serves as a relevant animal model of human multiple sclerosis. Myelin damage induced by TMEV infection appears to be immune mediated. Disease susceptibility correlates best with the temporal development of chronic, high levels of TMEV-specific, MHC class II-restricted delayed-type hypersensitivity (DTH) responses. We have proposed a model wherein these responses result in CNS demyelination via a macrophage-mediated terminal nonspecific bystander response. As virus-specific DTH responses appear to be intimately involved in the pathogenicity of CNS demyelination, it is critical to determine the specificity of these responses so that effector T cells specific for potential pathogenic epitopes can be targeted to serve as the focus of specific immunoregulatory processes. In the current study, the capsid protein specificity of the TMEV-susceptible SJL/J and TMEV-resistant C57BL/6 mouse strains was examined. DTH and Tprlf responses in both infected and immunized SJL/J mice were found to be predominantly directed toward the VP2 capsid protein, specifically to an epitope(s) contained within the N-terminal 150 amino acids of VP2. This same epitope was also found to be dominant in priming SJL/J mice for responses to challenge with intact virions. In contrast, the T cell-mediated responses of TMEV-resistant C57BL/6 mice did not show preferential reactivity towards VP2, because all three major capsid proteins (VP1, VP2, and VP3) elicited responses with essentially equal potency. The relationship of the restricted VP2 T cell epitope to predicted neutralizing antibody sites on the VP2 protein is discussed as is the potential use of this epitope for prevention and/or treatment of TMEV-induced demyelinating disease via the induction of epitope-specific tolerance.  相似文献   

18.
The peptide tag GATPQDLNTML, corresponding to amino acids 46-56 of the human immunodeficiency virus type 1 (HIV-1) capsid protein p24, is the linear epitope of the murine monoclonal antibody CB4-1. This antibody shows high affinity (KD = 1.8 x 10(-8) M) to the free epitope peptide in solution. The original p24 peptide tag and mutant derivatives were fused to the C terminus of a single-chain antibody (scFv) and characterized with respect to sensitivity in Western blot analyses and behavior in purification procedures using affinity chromatography. The p24 tag also proved to be a suitable alternative to the (Gly4Ser)3 linker commonly used to connect single-chain antibody variable regions derived from a heavy (VH) and light chain (VL). Binding of CB4-1 antibody to the p24 tag was not hampered when the tag was located internally in the protein sequence, and the specific antigen affinity of the scFv was only slightly reduced. All scFv variants were solubly expressed in Escherichia coli and could be purified from the periplasm. Our results highlight the p24 tag as a useful tool for purifying and detecting recombinantly expressed scFvs.  相似文献   

19.
Noroviruses are major pathogens associated with acute gastroenteritis. They are diverse viruses, with at least six genogroups (GI-GVI) and multiple genotypes defined by differences in the major capsid protein, VP1. This diversity has challenged the development of broadly cross-reactive vaccines as well as efficient detection methods. Here, we report the characterization of a broadly cross-reactive monoclonal antibody (MAb) raised against the capsid protein of a GII.3 norovirus strain. The MAb reacted with VLPs and denatured VP1 protein from GI, GII, GIV and GV noroviruses, and mapped to a linear epitope located in the inner shell domain. An alignment of all available VP1 sequences showed that the putative epitope (residues 52–56) is highly conserved across the genus Norovirus. This broadly cross-reactive MAb thus constitutes a valuable reagent for the diagnosis and study of these diverse viruses.  相似文献   

20.
Herpes simplex virus type 1 (HSV-1) intermediate capsids are composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, and the genes that encode these proteins, UL19, UL38, UL26, UL26.5, UL18, UL26, and UL35, respectively. The UL26 gene encodes a protease that cleaves itself and the product of the UL26.5 gene at a site (M site) 25 amino acids from the C terminus of these two proteins. In addition, the protease cleaves itself at a second site (R site) between amino acids 247 and 248. Cleavage of the UL26 protein gives rise to the capsid proteins VP21 and VP24, and cleavage of the UL26.5 protein gives rise to the capsid protein VP22a. Previously we described the production of HSV-1 capsids in insect cells by infecting the cells with recombinant baculoviruses expressing the six capsid genes (D. R. Thomsen, L. L. Roof, and F. L. Homa, J. Virol. 68:2442-2457, 1994). Using this system, we demonstrated that the products of the UL26 and/or UL26.5 genes are required as scaffolds for assembly of HSV-1 capsids. To better understand the functions of the UL26 and UL26.5 proteins in capsid assembly, we constructed baculoviruses that expressed altered UL26 and UL26.5 proteins. The ability of the altered UL26 and UL26.5 proteins to support HSV-1 capsid assembly was then tested in insect cells. Among the specific mutations tested were (i) deletion of the C-terminal 25 amino acids from the proteins coded for by the UL26 and UL26.5 genes; (ii) mutation of His-61 of the UL26 protein, an amino acid required for protease activity; and (iii) mutation of the R cleavage site of the UL26 protein. Analysis of the capsids formed with wild-type and mutant proteins supports the following conclusions: (i) the C-terminal 25 amino acids of the UL26 and UL26.5 proteins are required for capsid assembly; (ii) the protease activity associated with the UL26 protein is not required for assembly of morphologically normal capsids; and (iii) the uncleaved forms of the UL26 and UL26.5 proteins are employed in assembly of 125-nm-diameter capsids; cleavage of these proteins occurs during or subsequent to capsid assembly. Finally, we carried out in vitro experiments in which the major capsid protein VP5 was mixed with wild-type or truncated UL26.5 protein and then precipitated with a VP5-specific monoclonal antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号