首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amelioration of chilling stress by triadimefon in cucumber seedlings   总被引:11,自引:0,他引:11  
Cucumber (Cucumis satvus L.) seeds were imbibed in distilled water (control) and 10 mg l–1 triadimefon (TDM) for 10 h and then grown in a plant growth chamber with a light/dark temperature of 28/20 °C and a photoperiod of 14 h with a light intensity of 60 µmol m–2 s–1. 14-day-old seedlings were exposed to chilling stress with a light/dark temperature of 6/3 °C for 4 d. TDM improved the growth rate of cucumber seedling subjected to chilling stress and increased photosynthetic pigments contents and relative water content compared with the control at the end of chilling stress. Chilling stress decreased protein content and the activities of SOD, CAT and POD, but it increased proline, H2O2 and MDA accumulation, and relative electrical conductivity. TDM ameliorated the injury caused by chilling stress by preventing decreases in protein content and the activities of SOD, CAT and POD and by inhibiting increases in proline, H2O2 and MDA contents, and relative electrical conductivity, which suggested that TDM ameliorated the negative effect of chilling stress.  相似文献   

2.
Petunia × hybrida was grown under high (H), medium (M) and low (L) light intensity [photoperiod; 16 h d−1, photosynthetic photon flux density (PPFD); 360, 120 and 40 μmol m−2 s−1, respectively] as well as under end-of-day (EOD) red (R) and far-red (FR) light quality treatments [photoperiod; 14.5 h d−1, PPFD; 30 μmol m−2 s−1 EOD; 15 min, Control (C) light; without EOD light treatment]. Shoot growth, leaf anatomical and photosynthetic responses as well as the responses of peroxidase (POD) isoforms and their specific activities following transition to flowering (1–6 weeks) were evaluated. Flower bud formation of Petunia × hybrida was achieved at the end of the 4th week for H light treatment and on the end of the 6th week for FR light treatment. No flower bud formation was noticed in the C and R light treatments. H and M light treatments induced lower chlorophyll (Chla, Chlb, Chla+b) concentrations in comparison to L light. On the other hand R and FR light chlorophyll content were similar to C light. Photosynthetic parameters [CO2 assimilation rate (A), transpiration rate (E) and stomatal conductance (g s) values] were higher in the H light treated plants in comparison to M and L light treated plants. A, E and g s values of R and FR light were similar to C light plants. Leaf anatomy revealed that total leaf thickness, thickness of the contained tissues (epidermis, palisade and spongy parenchyma) and relative volume percentages of the leaf histological components were differently affected within the light intensity and the light quality treatments. POD specific activities increased from the 1st to the 6th week during transition to flowering. Native-PAGE analysis revealed the appearance of four anionic POD (A1–A4) isoforms in all light treatments. On the basis of the leaf anatomical, photosynthetic and plant morphological responses, the production of high quality Petunia × hybrida plants with optimal flowering times could be achieved through the control of both light intensity and light quality. The appearance of A1 and A2 anionic POD isoforms could be also used for successful scheduling under light treatments.  相似文献   

3.
In order to study the effect of light on the tobacco tissue culture WR-132, 5 passages (10 days' growth per passage) of these cells were grown in darkness, and 3 passages were separately grown in intense light (16000 lx). All other growth conditions were the same. The resulting isoperoxidase patterns present in these cells and in their growth media were analyzed at 2-day intervals during this period and then compared with the isoperoxidase patterns of cells grown under dim light conditions (10 lx). A new cathodic isoperoxidase (Cn) appeared in the medium within 2 days after the cells were placed in the dark. Cn was present in all media of WR-132 cell cultures analyzed throughout the 5 passages grown in darkness. The fifth passage in darkness produced total cessation of growth (apparent death). Cn increased and new anodic isoperoxidases Aa, Ab, Ad and Ae appeared in the media as the cells approached death in darkness.  相似文献   

4.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

5.
Hydrilla verticillata has a facultative single-cell system that changes from C3 to C4 photosynthesis. A NADP+-dependent malic enzyme (NADP-ME) provides a high [CO2] for Rubisco fixation in the C4 leaf chloroplasts. Of three NADP-ME genes identified, only hvme1 was up-regulated in the C4 leaf, during the light period, and it possessed a putative transit peptide. Unlike obligate C4 species, H. verticillata exhibited only one plastidic isoform that may perform housekeeping functions, but is up-regulated as the photosynthetic decarboxylase. Of the two cytosolic forms, hvme2 and hvme3, the latter exhibited the greatest expression, but was not light-regulated. The mature isoform of hvme1 had a pI of 6.0 and a molecular mass of 64 kD, as did the recombinant rHVME1m, and it formed a tetramer in the chloroplast. The recombinant photosynthetic isoform showed intermediate characteristics between isoforms in terrestrial C3 and C4 species. The catalytic efficiency of rHVME1m was four-fold higher than the cytosolic rHVME3 and two-fold higher than recombinant cytosolic isoforms of rice, but lower than plastidic forms of maize. The K m (malate) of 0.6 mM for rHVME1 was higher than maize plastid isoforms, but four-fold lower than found with rice. A comprehensive phylogenetic analysis of 25 taxa suggested that chloroplastic NADP-ME isoforms arose from four duplication events, and hvme1 was derived from cytosolic hvme3. The chloroplastic eudicot sequences were a monophyletic group derived from a cytosolic clade after the eudicot and monocot lineages separated, while the monocots formed a polyphyletic group. The findings support the hypothesis that a NADP-ME isoform with specific and unusual regulatory properties facilitates the functioning of the single-cell C4 system in H. verticillata. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
The percentage germination of seeds of parsley cv. Imperial Curled was higher in the light than in the dark, the high temperature limits for germination being 30 and 28°C for light and dark respectively. At the higher temperatures, the germination rate was slower in the dark. At 30°C, treatment with a gibberellin A4/7 mixture at 2 × 10–4 M partially alleviated the inhibiting effect of darkness on the germination percentage. Pre-incubation of parsley seeds at 35°C in the dark for 30 h increased the rate, but decreased the percentage, of germination of seeds incubated at 15°C in the light. Germination and seedling emergence studies were made on seed harvested from four different umbel positions. Although heavier seeds were produced from primary umbels than from other umbel orders, they were less viable as measured by seedling emergence in the glasshouse. The rate of emergence was decreased with increasing umbel order i.e. with later seed development: this was reflected in subsequent seedling weights, with seedlings from quarternary umbel seeds being about half the weight of those from primary umbel seeds. The upper temperature limit for dark germination was only slightly affected by umbel order, with quarternary umbel seeds being the most thermo-inhibited.Abbreviations BA N6-benzyladenine - GA4/7 a mixture of gibberellins A4 and A7 - SD8339 6-benzyl-amino-9-(tetrahydropyran-2-yl)-9H-purine  相似文献   

8.
We tested the main and interactive effects of elevated carbon dioxide concentration ([CO2]), nitrogen (N), and light availability on leaf photosynthesis, and plant growth and survival in understory seedlings grown in an N‐limited northern hardwood forest. For two growing seasons, we exposed six species of tree seedlings (Betula papyrifera, Populus tremuloides, Acer saccharum, Fagus grandifolia, Pinus strobus, and Prunus serotina) to a factorial combination of atmospheric CO2 (ambient, and elevated CO2 at 658 μmol CO2 mol−1) and N deposition (ambient and ambient +30 kg N ha−1 yr−1) in open‐top chambers placed in an understory light gradient. Elevated CO2 exposure significantly increased apparent quantum efficiency of electron transport by 41% (P<0.0001), light‐limited photosynthesis by 47% (P<0.0001), and light‐saturated photosynthesis by 60% (P<0.003) compared with seedlings grown in ambient [CO2]. Experimental N deposition significantly increased light‐limited photosynthesis as light availability increased (P<0.037). Species differed in the magnitude of light‐saturated photosynthetic response to elevated N and light treatments (P<0.016). Elevated CO2 exposure and high N availability did not affect seedling growth; however, growth increased slightly with light availability (R2=0.26, P<0.0001). Experimental N deposition significantly increased average survival of all species by 48% (P<0.012). However, seedling survival was greatest (85%) under conditions of both high [CO2] and N deposition (P<0.009). Path analysis determined that the greatest predictor for seedling survival in the understory was total biomass (R2=0.39, P<0.001), and that carboxylation capacity (Vcmax) was a better predictor for seedling growth and survival than maximum photosynthetic rate (Amax). Our results suggest that increasing [CO2] and N deposition from fossil fuel combustion could alter understory tree species recruitment dynamics through changes in seedling survival, and this has the potential to alter future forest species composition.  相似文献   

9.
Perkins  Steven R.  Keith Owens  M. 《Plant Ecology》2003,168(1):107-120
Anthropogenic emissions contribute to an annual 0.5% increase in atmospheric CO2. As global CO2 levels increase, regional precipitation patterns will likely be altered. Our primary objective was to determine whether a reduction in summer precipitation or an increase in winter/spring precipitation, predicted by global climate change models, will favor the establishment of C4 grasses or C3 shrubs in southern savannas. Our secondary objective was to determine how defoliation and microsite light availability interact with altered precipitation regimes to influence grass and shrub seedling growth and biomass allocation patterns. Seedlings of 3 shrub species (Prosopis glandulosa var. glandulosa, Acacia berlandieri, and A. greggii var. wrightii) and 3 grass species (Aristida purpurea var. wrightii, Setaria texana, and Stipa leucotricha) were watered based on probable changes in precipitation in a CO2 enriched atmosphere (0.6, 0.8, and 1.0 current ambient summer precipitation and 1.0, 1.15, and 1.30 current winter/spring precipitation). Seedlings were defoliated at 3 levels (non-defoliated, single defoliation, and repeated defoliation) within 2 levels of microsite light availability (100 and 50% ambient). Defoliation significantly reduced total shrub and grass seedling biomass. Reducing light availability decreased shrub seedling root:shoot ratio, but total biomass was not significantly affected. Grass seedling biomass and root:shoot ratio decreased when light availability was reduced. Changing the seasonality of precipitation by reducing summer rainfall or increasing winter/spring rainfall did not significantly influence growth or biomass allocation of grass and shrub seedlings in a semiarid savanna. Microsite variations in defoliation intensity and light availability influence seedling growth and biomass allocation more than changing seasonality of precipitation. Shrub and grass seedling establishment and growth on semiarid rangelands are already limited by summer precipitation, so a further reduction as proposed by climate change models will have a limited impact on seedling dynamics.  相似文献   

10.
NADP-malic enzyme (NADP-ME, EC 1.1.1.40), a key enzyme in C4 photosynthesis, provides CO2 to the bundle-sheath chloroplasts, where it is fixed by ribulose-1,5-bisphosphate carboxylase/oxygenase. We characterized the isoform pattern of NADP-ME in different photosynthetic species of Flaveria (C3, C3-C4 intermediate, C4-like, C4) based on sucrose density gradient centrifugation and isoelectric focusing of the native protein, western-blot analysis of the denatured protein, and in situ immunolocalization with antibody against the 62-kD C4 isoform of maize. A 72-kD isoform, present to varying degrees in all species examined, is predominant in leaves of C3 Flaveria spp. and is also present in stem and root tissue. By immunolabeling, NADP-ME was found to be mostly localized in the upper palisade mesophyll chloroplasts of C3 photosynthetic tissue. Two other isoforms of the enzyme, with molecular masses of 62 and 64 kD, occur in leaves of certain intermediates having C4 cycle activity. The 62-kD isoform, which is the predominant highly active form in the C4 species, is localized in bundle-sheath chloroplasts. Among Flaveria spp. there is a 72-kD constitutive form, a 64-kD form that may have appeared during evolution of C4 metabolism, and a 62-kD form that is necessary for the complete functioning of C4 photosynthesis.  相似文献   

11.
Sugar maple (Acer saccharum Marsh.) seedlings were grown in a nursery for three years in 13, 25, 45 and 100 per cent of full daylight. During the third year of growth, the rates of their apparent photosynthesis and respiration were measured periodically with an infra-red gas analyzer at various light intensities and normal CO2 concentration. In addition, the rates of apparent photosynthesis of a single attached leaf of the same seedlings were measured at saturating light intensity, hut varying CO2 concentrations. An increase in the light intensity in which seedlings were grown had no effect on their height or mean leaf area, hut resulted in thicker leaves, an increase in the total leaf area per seedling due to an increase in the number of leaves, an increase in the dry weight especially of roots and a decrease in the chlorophyll content of leaves. Throughout the growing season seedlings grown in full daylight, as compared with those grown in lower light intensities, had the lowest rates of apparent photosynthesis measured at standard conditions (21,600 lux light intensity and 300 ul/l of CO2), when this was expressed per unit leaf area, hut the highest rates on a per seedling basis. Thus dry matter production attained at the end of the growing season correlated positively with the photosynthetic rate per seedling, but not per unit leaf area. The rates of apparent photosynthesis of seedlings grown at lower light intensities were more responsive to changes in light intensity or CO2 concentration than those of seedlings grown in full daylight intensity.  相似文献   

12.
In this study using biochemical approaches we identified two calcium-dependent protein kinases (CDPKs) named PnCDPK52 and PnCDPK56 in soluble protein extracts from seedlings of Pharbitis nil. Both enzymes phosphorylated the specific substrate histone III-S in the presence of Ca2+ and cross-reacted with antibodies against the CDPK. PnCDPKs exhibited quite different activity and protein levels during germination and successive stages of seedling growth. PnCDPK52 protein level was high in seeds and during germination, whereas PnCDPK56 increased in the next stages of seedling growth, being the dominant enzymes in mature seedlings, of the light- and dark-grown plant. In all cases both activity and accumulation of protein PnCDPK56 was higher in dark grown plants whereas exposure to light reduced both factors. When etiolated cotyledons were exposed to light, the activity of PnCDPK56 was reduced to the basal level within 5 h. Conversely, increasing activity of PnCDPK56 in cotyledons of green plants shifted to darkness was extremely rapid, reaching the maximum level after just 1 h of darkness and then gradually decreased. Further lengthening of the darkness to 16 h resulted in a strong increase in activity at 12 h. These data indicate that at least two isoforms of CDPK are involved in germination and seedling growth of P. nil. The differences in PnCDPKs strongly argue for the pleiotropic role of these isoforms. It seems that PnCDPK52 is associated with the germination process and PnCDPK56 with seedling growth. Moreover it suggests that activity of PnCDPK56 is controlled by light via the photoreceptor-dependent pathway.  相似文献   

13.
Glutamate dehydrogenase (GDH, E.C. 1.4.1.3) of mustard cotyledons was investigated during the first 4 days of seedling development. The enzyme was found to be composed of seven catalytically active isoforms (each with a molecular mass of 270 kDa) which exhibited a charge heterogeneity when investigated by isoelectric focusing. Antibodies against the purified isoform 7, raised in rabbits, cross-reacted with each of the isoforms in Western blotting experiments. In addition, each of the isoforms was composed of four immunopositive reacting polypeptides with 19, 21, 23 and 25 kDa. During development of the seedlings, a shift in the isoform pattern towards the more acidic forms was found which was more pronounced when the seedlings were supplied with 15 mM NH4Cl. The time course of changes in total GDH level can be correlated with the time course of disappearance of storage proteins. Both parameters are negatively regulated by light possibly via the photoreceptor, phytochrome. There are some indications that GDH in young mustard cotyledons mainly acts in the deaminating direction.  相似文献   

14.
Non-indigenous grasses impede woody succession   总被引:2,自引:2,他引:0  
With the proliferation of old fields and the decline of native grasslands in North America, non-indigenous grasses, which tend to colonize and dominate North American old fields, have become progressively more abundant. These new grasses can differ from native grasses in a number of ways, including root and shoot morphology (e.g., density of root mat, height of shoots), growth phenology (e.g., cool season vs. warm season growth), and plant–soil–water relations due to differences in photosynthetic physiology (C3 vs. C4). Woody plants have been slow to colonize some old fields in the prairie-forest border area of North America and it is hypothesized that non-indigenous grasses may be contributing to the poor establishment success of woody plants in this region, possibly through more intense competition for resources. To test this hypothesis, a multi-factorial field experiment was conducted in which water, nitrogen, and grass functional group (non-indigenous C3 and native C4 species) were manipulated in a study of survival of oak seedlings. The grass type variously affected some of the different growth measurements, however, the effects of grass type on seedling growth were small compared to the effects on seedling survival. The results showed that when grown under dry conditions, seedlings growing in non-indigenous grasses experienced up to a 50% reduction in survival compared to those growing in native grasses under the same conditions. Analyses of root and shoot competition showed that the cause for the reduced survival in the non-indigenous grasses was due primarily to underground processes. The findings confirmed our initial hypothesis that non-indigenous grasses are likely contributing to the poor establishment success of woody plants in these old fields. However, the explanation for the reduced oak seedling survival in non-indigenous grasses does not appear to be due to reduced resource availability since soil water levels did not differ between non-indigenous and native grass plots and other resource levels measured (light, NO3, and NH4) were higher in non-indigenous grass plots under dry conditions. An alternative explanation is that the non-indigenous grasses modify the soil environment in ways that, under dry conditions, are deleterious to emerging oak seedlings. Since current climate projections for the upper Midwest are for hotter and drier summers, the results suggest that the resistance of these old fields to oak encroachment will likely increase in the future.  相似文献   

15.
Branchlets of broccoli (Brassica oleracea L.) were used to examine ethylene-stimulated chlorophyll catabolism. Branchlets treated with: 1) air (CK); 2) 1 µL·L–1 1-methylcyclopropene (1-MCP) for 14 hr at 20 °C; 3) 1000 µL·L–1 ethylene (C2H4) for 5 hr at 20 °C; or 4) 1-MCP then C2H4, were stored in the dark at 20 °C for up to 3 d. Chlorophyll (Chl) content and branchlet hue angle decreased during the storage period and 1-MCP treatment delayed this change. Chl degradation in broccoli was accelerated by exposure to C2H4, especially for Chl a. Prior treatment with 1-MCP prevented degreening stimulated by C2H4. Lipoxygenase activity was not altered by any of the treatments, however, 1-MCP with or without ethylene resulted in reduced activity of chlorophyllase (Chlase) and peroxidase (POD). Exposure to C2H4 stimulated Chlase activity and extended the duration of high POD activity. Treatment with 1-MCP followed by C2H4 resulted in reduced POD activity and delayed the increase in Chlase activity. The results suggest chlorophyll in broccoli can be degraded via the POD – hydrogen peroxide system. Exposure to C2H4 enhances activity of Chlase and extends the duration of high POD activity, and these responses may accelerate degreening. Treatment with 1-MCP delays yellowing of broccoli, an effect that may be due to the 1-MCP-induced reduction in POD and Chlase activities.  相似文献   

16.
Both hypocotyl and root growth of sunflower (Helianthus annuus) were examined in response to a range of narrow-band width light treatments. Changes in two growth-regulating hormones, ethylene and gibberellins (GAs) were followed in an attempt to better understand the interaction of light and hormonal signaling in the growth of these two important plant organs. Hydroponically-grown 6-day-old sunflower seedlings had significantly elongated hypocotyls and primary roots when grown under far-red (FR) light produced by light emitting diodes (LEDs), compared to narrow-band red (R) and blue (B) light. However, hypocotyl and primary root lengths of seedlings given FR light were still shorter than was seen for dark-grown seedlings. Light treatment in general (compared to dark) increased lateral root formation and FR light induced massive lateral root formation, relative to treatment with R or B light. Levels of ethylene evolution (roots and hypocotyls) and concentrations of endogenous GAs (hypocotyls) were assessed from both 6-day-old sunflower plants either grown in the dark, or treated with FR, R or B light. Both R and B light had similar effects on hypocotyl and root growth as well as on ethylene and on hypocotyl GA levels. Dark treatment resulted in the highest ethylene levels, whereas FR treatment significantly reduced ethylene evolution for both hypocotyls and roots. R- and B-light treatments elevated ethylene evolution relative to FR light. Endogenous GA53 and GA19 levels in hypocotyls were significantly higher and GA44, GA20 and GA1 levels significantly lower, for dark and FR light treatments compared to R and B light-treatments. The patterns seen for changes in GA concentrations indicate FR-, R- and B-light-mediated effects [differences] in the metabolism of the early C20 GAs, GA53 → GA44 → GA19. Surprisingly, GA20, GA1 and GA8 levels in hypocotyls were very much reduced by treatment of the plants with FR light, relative to B and R-light treatments, e.g. the increased hypocotyl elongation induced by FR light was correlated with reduced levels of all three of the downstream C19 GAs. The best explanation, albeit speculative, is that a more rapid metabolism, i.e. GA20 → GA1 → GA8 → GA8 conjugates occurs under FR light. Although this study provided no evidence that elevated ethylene evolution by roots or hypocotyls of sunflower is controlling growth via endogenous GA biosynthesis, there are differences between soil-grown and hydroponically-grown sunflower seedlings with regard to trends seen for hypocotyl GA concentrations and both root and hypocotyl ethylene evolution in response to narrow band width R and FR light signaling.  相似文献   

17.
Gehring  Catherine A. 《Plant Ecology》2003,167(1):127-139
Light intensity and root colonization by arbuscular mycorrhizal (AM) fungi are considered important factors affecting the performance of rain forest plants, yet few studies have examined how these two factors interact. Whether AM colonization promoted growth or caused shifts in biomass allocation in seedlings of four species of Australian rain forest tree (Flindersia brayleana, Acmena resa, Cryptocarya mackinnoniana and Cryptocarya angulata), grown in a glasshouse under light conditions that mimicked the shaded understory (3% PAR) and small light gaps (10% PAR), was examined. Seedlings were grown in sterilized field soil and either inoculated with AM fungi or provided sterile inoculum. Four major findings emerged. First, in all species, seedlings grown in small gap light intensities were larger than seedlings grown in understory light intensities. Second, when seedling biomass was included as a covariate, variation in light intensity was associated with significant shifts in biomass allocation. In all species, leaf area ratio was lower at 10% PAR than at 3% PAR, while root-to-shoot ratio showed the opposite pattern in one of the four species (C. mackinonniana). Third, although percentage root length colonized by AM fungi was greater at 10% PAR than 3% PAR in all species, this difference could be accounted for by variation in seedling size in all species except C. angulata. Fourth, growth and biomass allocation responses to AM colonization varied with light intensity and plant species. AM colonization promoted growth in both light regimes only in F. brayleana, while it had no effect on growth in C. mackinnoniana and C. angulata in either light regime and promoted growth only under high light in A. resa. AM colonization had no effect on leaf area ratio or root-to-shoot ratio in any of the species, and significantly altered specific root length in only one of the four species (C. mackinnoniana). These findings suggest that rain forest seedlings are highly variable in their growth responses to AM colonization and that some of this variability is related to the light intensity of the environment. Given that seedlings may spend many years in the shaded understory, these differences among species could have important effects on long-term seedling performance and seedling community dynamics.  相似文献   

18.
Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol−1) and elevated (784 µmol mol−1) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.  相似文献   

19.
Dark-grown maize seedlings (hybrid WF-9 × 38-11) exposed for 1 or more hours to white light and then returned to darkness developed mesocotyls with enlarged apical diameters. This swelling response was an all-or-none response, and the fraction of the seedling population that showed the response depended on seedling age at irradiation. Irradiation of the coleoptile alone was nearly as effective in causing this response as was irradiation of the nodal region of the epicotyl, but irradiation of the mesocotyl base was ineffective. Removal of the coleoptile prior to irradiation did not prevent the formation of the light-induced swelling. Exogenously applied C2H4 (10 microliters per liter) for 24 hours in dark also induced swelling of the mesocotyl. The swelling induced in the intact seedlings was localized in the apical mesocotyl tissues with either light or C2H4 treatment, and maximal response to both treatments occurred with 3- to 4-day-old seedlings. Swelling of the mesocotyl was the result of transverse cell enlargement, not increase of cell numbers. The evidence suggests that light and C2H4 induce mesocotyl swelling in intact maize shoots by a common mechanism.  相似文献   

20.
Loy JB  Liu PB 《Plant physiology》1974,53(3):325-330
Hypocotyl and root elongation in a dwarf and a normal strain of watermelon (Citrullus lanatus [Thunb.] Matsu.) in the absence or presence of different gibberellins was investigated in seedlings grown under gold fluorescent light or in darkness. The normal strain, “Sugar Baby,” responded only slightly to the gibberellic acids employed. At appropriate concentrations all of the gibberellic acids were capable of normalizing growth in the monorecessive dwarf strain, WB-2, in darkness or in light. Gibberellins A4+7 and A7 were effective in stimulating hypocotyl elongation at concentrations 10 to 15 times lower than that needed for a response to GA1 or GA3. Dark-grown dwarfs responded to about a 3-fold lower concentration of GA4+7 than those grown in light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号