首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serine/threonine protein phosphatases are important mediators of general cellular function as well as neurodegenerative processes. We have previously shown inhibition of protein phosphatases to be as neurotoxic as glutamate-induced neuronal death but resistant to neuroprotection by estrogens. In this study, the mechanism by which phosphatase inhibition via okadaic acid (OA) induced neurotoxicity is explored. Neurons were exposed to OA or glutamate in the presence or absence of various protein kinases inhibitors, and/or one of four estrogens. Both OA and glutamate induced cell death via increased reactive oxygen species, protein carbonylation, lipid peroxidation, caspase-3 activity, and mitochondrial dysfunction. All estrogens attenuated glutamate-mediated responses, but not OA-induced responses. In addition, inhibition of protein kinase C and mitogen-activated protein kinase pathway was neuroprotective against glutamate but not OA toxicity. Interestingly, inhibition of mitogen-activated protein kinase pathway with PD98096 or U0126 caused a decrease in reactive oxygen species production suggesting that activation of ERK1/2 could further exacerbate the oxidative stress caused by glutamate-induced toxicity; however, these inhibitors had no effect on OA-induced toxicity. Collectively, these results indicate that both glutamate and OA neurotoxicities are mediated by persistent activation of ERK1/2 and/or protein kinase C and a resulting oxidative stress, and that protein phosphatase activity is an important and necessary aspect of estrogen-mediated neuroprotection.  相似文献   

2.
Protein kinase C (PKC) consists of a family of Ca2+/phospholipid-dependent isozymes that has been implicated in the delayed neurotoxic effects of glutamate in vitro. In the present study, we assessed the effect of the glutamate analogue kainic acid (KA) on the subcellular expression of PKC isozymes in the hippocampus (HPC) in the period preceding (0.5, 1.5, 12, and 24 h) and during (120 h) hippocampal necrosis using western blot analysis and PKC isozyme-specific antibodies. Before subcellular fractionation (cytosol + membrane), hippocampi were microdissected into "HPC" (fields CA1-CA3) and "dentate gyrus" (DG; granule cells + hilus) regions. Four general patterns of alterations in PKC isozyme expression/distribution were observed following KA treatment. The first pattern was a relative stability in expression following KA treatment and was most apparent for cytosol PKCalpha (HPC + DG) and membrane (HPC) and cytosol (DG) PKCbetaII. The second pattern, observed with PKCgamma and PKCepsilon, was characterized by an initial increase in expression in both membrane and cytosolic fractions before seizure activity (0.5 h) followed by a gradual decrease until significant reductions are observed by 120 h. The third pattern, exhibited by PKCdelta, involved an apparent translocation, increasing in the membrane and decreasing in the cytosol, followed by down-regulation in both fractions and subsequent recovery. The fourth pattern was observed with PKCzeta only and entailed a significant reduction in expression before and during limbic motor seizures followed by a dramatic fivefold increase in the membrane fraction during the period of hippocampal necrosis (120 h). Although these patterns did not segregate according to conventional PKC isozyme classifications, they do indicate dynamic isozyme-specific regulation by KA. The subcellular redistribution of PKC isozymes may contribute to the histopathological sequelae produced by KA in the hippocampus and may model the pathogenesis associated with diseases involving glutamate-induced neurotoxicity.  相似文献   

3.
4.
The protein kinase C (PKC) family has been implicated in the regulation of apoptosis. However, the contribution of individual PKC isozymes to this process is not well understood. We reported amplification of the chromosome 2p21 locus in 28% of thyroid neoplasms, and in the WRO thyroid carcinoma cell line. By positional cloning we identified a rearrangement and amplification of the PKCepsilon gene, that maps to 2p21, in WRO cells. This resulted in the overexpression of a chimeric/truncated PKCepsilon (Tr-PKCepsilon) mRNA, coding for N-terminal amino acids 1-116 of the isozyme fused to an unrelated sequence. Expression of the Tr-PKCepsilon protein in PCCL3 cells inhibited activation-induced translocation of endogenous PKCepsilon, but its kinase activity was unaffected, consistent with a dominant negative effect of the mutant protein on activation-induced translocation of wild-type PKCepsilon and/or displacement of the isozyme to an aberrant subcellular location. Cell lines expressing Tr-PKCepsilon grew to a higher saturation density than controls. Moreover, cells expressing Tr-PKCepsilon were resistant to apoptosis, which was associated with higher Bcl-2 levels, a marked impairment in p53 stabilization, and dampened expression of Bax. These findings point to a role for PKCepsilon in apoptosis-signaling pathways in thyroid cells, and indicate that a naturally occurring PKCepsilon mutant that functions as a dominant negative can block cell death triggered by a variety of stimuli.  相似文献   

5.
To better understand metabotropic/ionotropic integration in neurons we have examined the regulation of M1 muscarinic acetylcholine (mACh) receptor signalling in mature (> 14 days in vitro), synaptically-active hippocampal neurons in culture. Using a protocol where neurons are exposed to an EC(50) concentration of the muscarinic agonist methacholine (MCh) prior to (R1), and following (R2) a desensitizing pulse of a high concentration of this agonist, we have found that the reduction in M(1) mACh receptor responsiveness is decreased in quiescent (+tetrodotoxin) neurons and increased when synaptic activity is enhanced by blocking GABA(A) receptors with picrotoxin. The picrotoxin-mediated effect on M1 mACh receptor responsiveness was completely prevented by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor blockade. Inhibition of endogenous G protein-coupled receptor kinase 2 by transfection with the non-G(q/11)alpha-binding, catalytically-inactive (D110A,K220R)G protein-coupled receptor kinase 2 mutant, decreased the extent of M1 mACh receptor desensitization under all conditions. Pharmacological inhibition of protein kinase C (PKC) activity, or chronic phorbol ester-induced PKC down-regulation had no effect on agonist-mediated receptor desensitization in quiescent or spontaneously synaptically active neurons, but significantly decreased the extent of receptor desensitization in picrotoxin-treated neurons. MCh stimulated the translocation of diacylglycerol- sensitive eGFP-PKCepsilon, but not Ca2+/diacylglycerol-sensitive eGFP-PKCbetaII in both the absence, and presence of tetrodotoxin. Under these conditions, MCh-stimulated eGFP-myristoylated, alanine-rich C kinase substrate translocation was dependent on PKC activity, but not Ca2+/calmodulin. In contrast, picrotoxin-driven translocation of myristoylated, alanine-rich C kinase substrate was accompanied by translocation of PKCbetaII, but not PKCepsilon, and was dependent on PKC and Ca2+/calmodulin. Taken together these data suggest that the level of synaptic activity may determine the different kinases recruited to regulate M1 mACh receptor desensitization in neurons.  相似文献   

6.
The anti-Parkinson, selective irreversible monoamine oxidase B inhibitor drug, rasagiline (Azilect), recently approved by the US Food and Drug Administration, has been shown to possess neuroprotective-neurorescue activities in in vitro and in vivo models. Recent preliminary studies indicated the potential neuroprotective effect of the major metabolite of rasagiline, 1-(R)-aminoindan. In the current study, the neuroprotective properties of 1-(R)-aminoindan were assessed employing a cytotoxic model of human neuroblastoma SK-N-SH cells in high-density culture-induced neuronal death. We show that aminoindan (0.1-1 mumol/L) significantly reduced the apoptosis-associated phosphorylated protein, H2A.X (Ser139), decreased the cleavage of caspase 9 and caspase 3, while increasing the anti-apoptotic proteins, Bcl-2 and Bcl-xl. Protein kinase C (PKC) inhibitor, GF109203X, prevented the neuroprotection, indicating the involvement of PKC in aminoindan-induced cell survival. Aminoindan markedly elevated pPKC(pan) and specifically that of the pro-survival PKC isoform, PKCepsilon. Additionally, hydroxyaminoindan, a metabolite of a novel bifunctional drug, ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], combining cholinesterase and monoamine oxidase inhibitor activity, exerted similar neuroprotective properties. Aminoindan and hydroxyaminoindan also protected rat pheochromacytoma PC-12 cells against the neurotoxin, 6-hydroxydopamine. Our findings suggest that both metabolites may contribute to the overall neuroprotective activity of their respective parent compounds, further implicating rasagiline and ladostigil as potentially valuable drugs for treatment of a wide variety of neurodegenerative disorders of aging.  相似文献   

7.
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.  相似文献   

8.
Epidermal growth factor (EGF) protects the intestinal epithelial tight junctions from acetaldehyde-induced insult. The role of phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) isoforms in the mechanism of EGF-mediated protection of tight junction from acetaldehyde was evaluated in Caco-2 cell monolayers. EGF-mediated prevention of acetaldehyde-induced decrease in transepithelial electrical resistance and an increase in inulin permeability, and subcellular redistribution of occludin and ZO-1 was attenuated by reduced expression of PLCgamma1 by short hairpin RNA. EGF induced a rapid activation of PLCgamma1 and PLC-dependent membrane translocation of PKCepsilon and PKCbetaI. Inhibition of PKC activity or selective interference of membrane translocation of PKCepsilon and PKCbetaI by RACK interference peptides attenuated EGF-mediated prevention of acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. BAPTA-AM and thapsigargin blocked EGF-induced membrane translocation of PKCbetaI and attenuated EGF-mediated prevention of acetaldehyde-induced disruption of tight junctions. EGF-induced translocation of PKCepsilon and PKCbetaI was associated with organization of F-actin near the perijunctional region. This study shows that PLCgamma-mediated activation of PKCepsilon and PKCbetaI and intracellular calcium is involved in EGF-mediated protection of tight junctions from acetaldehyde-induced insult.  相似文献   

9.
The phosphorylation of Kvβ2 was investigated by different protein kinases. Protein kinase A catalytic subunit (PKA-CS) yielded the greatest phosphorylation of recombinant Kvβ2 (rKvβ2), with limited phosphorylation by protein kinase C catalytic subunit (PKC-CS) and no detectable phosphorylation by casein kinase II (CKII). Protein kinase(s) from adult rat brain lysate phosphorylated both rKvβ2 and endogenous Kvβ. The PKA inhibitor, PKI 6-22, fully inhibited PKA-mediated phophorylation of rKvβ2 yet showed minimal inhibition of kinase activity present in rat brain. The inhibitor Gö 6983, that blocks PKCα, PKCβ, PKCγ, PKCδ and PKCζ activities, inhibited rKvβ2 phosphorylation by rat brain kinases, with no inhibition by Gö 6976 which blocks PKCα and PKCβΙ activities. Dose-response analysis of Gö 6983 inhibitory activity indicates that at least two PKC isozymes account for the kinase activity present in rat brain. Τhus, while PKA was the most active protein kinase to phosphorylate rKvβ2 in vitro, Kvβ2 phosphorylation in the rat brain is mainly mediated by PKC isozymes.  相似文献   

10.
Glutamate is the major excitatory neurotransmitter in the CNS. Although its role in neurons has been studied extensively, little is known about its function in astrocytes. We studied the effects of glutamate on signaling pathways in primary astrocytes. We found that the tyrosine kinase related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated in response to glutamate in a time- and dose-dependent manner. This phosphorylation was pertussis toxin (PTX) sensitive and could be attenuated by the depletion of Ca2+ from intracellular stores. RAFTK tyrosine phosphorylation was mediated primarily by class I/II metabotropic glutamate receptors and depends on protein kinase C (PKC) activation. Glutamate treatment of primary astrocytes also results in a significant increase in the activity of the mitogen-activated protein kinases [extracellular signal-related kinases 1/2 (ERK1/2)]. Like RAFTK phosphorylation, ERK1/2 activation is PTX sensitive and can be attenuated by the depletion of intracellular Ca2+ and by PKC inhibition, suggesting that RAFTK might mediate the glutamate-dependent activation of ERK1/2. Furthermore, we demonstrated that glutamate stimulation of primary astrocytes leads to a significant increase in DNA synthesis. Glutamate-stimulated DNA synthesis is PTX sensitive and can be inhibited by the MAP kinase kinase inhibitor PD98059, suggesting that in primary astrocytes, glutamate might signal via RAFTK and MAP kinase to promote DNA synthesis and cell proliferation.  相似文献   

11.
The mechanisms underlying control of cell growth and differentiation in epithelial tissues are poorly understood. Protein kinase C (PKC) isozymes, members of a large family of serine/threonine kinases of fundamental importance in signal transduction, have been increasingly implicated in the regulation of cell growth, differentiation, and function. Using the rat intestinal epithelium as a model system, we have examined PKC-specific activity as well as individual PKC isozyme expression and distribution (i.e., activation status) in epithelial cells in situ. Increased PKC activity was detected in differentiating and functional cells relative to immature proliferating crypt cells. Immunofluorescence and Western blot analysis using a panel of isozyme- specific antibodies revealed that PKC alpha, beta II, delta, epsilon, and zeta are expressed in rat intestinal epithelial cells and exhibit distinct subcellular distribution patterns along the crypt-villus unit. The combined morphological and biochemical approach used permitted analysis of the activation status of specific PKC isozymes at the individual cell level. These studies showed that marked changes in membrane association and level of expression for PKC alpha, beta II, delta, and zeta occur as cells cease division in the mid-crypt region and begin differentiation. Additional changes in PKC activation status are observed with acquisition of mature function on the villus. These studies clearly demonstrate naturally occurring alterations in PKC isozyme activation status at the individual cell level within the context of a developing tissue. Direct activation of PKC in an immature intestinal crypt cell line was shown to result in growth inhibition and coincident translocation of PKC alpha from the cytosolic to the particulate subcellular fraction, paralleling observations made in situ and providing further support for a role of intestinal PKC isozymes in post-mitotic events. PKC isozymes were also found to be tightly associated with cytoskeletal elements, suggesting participation in control of the structural organization of the enterocyte. Taken together, the results presented strongly suggest an involvement of PKC isoforms in cellular processes related to growth cessation, differentiation, and function of intestinal epithelial cells in situ.  相似文献   

12.
Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. PKCdelta, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of PKCdelta totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical PKCalpha promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to PKCepsilon, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. PKCdelta stimulates the release of TNFalpha from the plasma membrane, and blockade of TNFalpha secretion or TNFalpha receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.  相似文献   

13.
14.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.  相似文献   

15.
Protein kinase C (PKC) shows a neuronal protection effect in neurodegenerative diseases. In this study, we test whether berberine has a positive effect on the activity of PKC in quinolinic acid (QA)‐induced neuronal cell death. We used intrastriatal injections of QA mice model to test the effect of berberine on motor and cognitive deficits, and the PKC signalling pathway. Treatment with 50 mg/kg b.w of berberine for 2 weeks significantly prevented QA‐induced motor and cognitive impairment and related pathologic changes in the brain. QA inhibited the phosphorylation of PKC and its downstream molecules, GSK‐3β, ERK and CREB, enhanced the glutamate level and release of neuroinflammatory cytokines; these effects were attenuated by berberine. We used in vivo infusion of Go6983, a PKC inhibitor to disturb PKC activity in mice brain, and found that the effect of berberine to reverse motor and cognitive deficits was significantly reduced. Moreover, inhibition of PKC also blocked the anti‐excitotoxicity effect of berberine, which is induced by glutamate in PC12 cells and BV2 cells, as well as anti‐neuroinflammatory effect in LPS‐stimulated BV2 cells. Above all, berberine showed neuroprotective effect against QA‐induced acute neurotoxicity by activating PKC and its downstream molecules.  相似文献   

16.
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.  相似文献   

17.
The neuroprotective effects of estrogen were studied in the ischemic model mice by 90 min transient unilateral middle cerebral artery occlusion (MCAO) followed by 22.5 h reperfusion. The total infarct size in C57BL/6 female mice after MCAO and reperfusion was significantly smaller than that in male mice. Intraperitoneal injection of estrogen after the start of reperfusion significantly reduced the infarct volume in the male mice. However, no significant gender difference was found in total infarct size in gamma protein kinase C (PKC)-knockout mice, suggesting that the neuroprotective effects of estrogen are due to the activation of a specific subtype of PKC, gammaPKC, a neuron-specific PKC subtype, in the brain. We demonstrated that exogenous estrogen-induced neuroprotection was attenuated in gammaPKC-knockout mice. Immunocytochemical study showed that gammaPKC was translocated to nerve fiber-like structures when observed shortly after MCAO and reperfusion. We also visualized the rapid and reversible translocation of gammaPKC-GFP (green fluorescent protein) by estrogen stimulation in living CHO-K1 cells. These results suggest that the activation of gammaPKC through the G-protein-coupled estrogen receptors on the plasma membrane is involved in the estrogen-induced neuroprotection against focal brain ischemia.  相似文献   

18.
Protein kinase C (PKC) regulates the activity and/or cell surface expression of several different neurotransmitter transporters, including subtypes of glutamate transporters. In the present study, the effects of pharmacological inhibitors of PKC were studied in primary astrocyte cultures that express the glutamate aspartate transporter (GLAST) subtype of glutamate transporter. We found that general inhibitors of PKC, bisindolylmaleimide I (Bis I), bisindolylmaleimide II (Bis II), staurosporine and an inhibitor of classical PKCs, Gö6976, had no effect on Na+‐dependent glutamate transport activity. However, rottlerin, a putative specific inhibitor of PKCδ, decreased transport activity with an IC50 value (less than 10 µm ) that is comparable to that reported for inhibition of PKCδ. The effect of rottlerin was very rapid (maximal effect within 5 min) and was due to a decrease in the capacity (Vmax) for transport. Rottlerin also caused a drastic loss of GLAST immunoreactivity within 5 min, suggesting that rottlerin accelerates GLAST degradation/proteolysis. Rottlerin had no effect on cell surface or total expression of the transferrin receptor, providing evidence that the effect on GLAST cannot be attributed to a non‐specific internalization/degradation of plasma membrane proteins. Down‐regulation of PKCδ with chronic phorbol ester treatment did not block rottlerin‐mediated inhibition of transport activity. These results suggest a novel mechanism for regulation of the GLAST subtype of glutamate transporter and indicate that there is a rottlerin target that is capable of controlling the levels of GLAST by controlling the rate of degradation or limited proteolysis. It appears that the target for rottlerin may not be PKCδ.  相似文献   

19.
Previous studies have demonstrated that cyclic strain induces keratinocyte proliferative and morphological changes. Since protein kinase C (PKC) is known to play an important role in the regulation of keratinocyte growth and differentiation, the objective of this study was to determine the role of the PKC signaling pathway as a mediator of strain modulation of the keratinocyte phenotype. In particular, we tested the following specific hypotheses: (1) cyclic strain stimulates PKC activity and translocation, (2) cyclic strain activates PKC in an isoform-specific manner, and (3) PKC mediates the strain activated proliferative and morphological response in cultured human keratinocytes. To test these hypotheses, keratinocytes were subjected to vacuum-generated cyclic strain (10% average strain), followed by measurement of PKC activity, PKC isoform distribution by Western blot analysis and confocal microscopy, and examination of the effect of PKC inhibitors (calphostin C and staurosporine) on strain induced proliferative and morphological changes. We observed stimulation of PKC activity (62.3 ± 5.1% increase) coupled with translocation of PKC from the cytosolic to the membrane fraction in keratinocytes subjected to acute cyclic strain. Cyclic strain also caused translocation of PKC α and δ, but not ζ isoforms, from the cytosolic to the membrane fraction as demonstrated by both Western blot analysis and confocal microscopy. PKC β was not detected in these cells. PKC inhibitors, calphostin C (10 nM), and staurosporine (5 nM), inhibited strain-induced PKC activation and keratinocyte proliferation, but did not block the effects of strain on cellular morphology or alignment. We conclude that these data support our hypothesis that cyclic strain stimulates PKC activity and translocation in an isoform-specific manner in cultured human keratinocytes. Moreover, our studies with PKC inhibitors support the hypothesis that strain-induced changes in the keratinocyte phenotype may be selectively modulated by PKC. J. Cell. Biochem. 67:327–337, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号