首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Q  Ye W  Hu N  Cai H  Yu H  Wang P 《Biosensors & bioelectronics》2010,26(4):1672-1678
Olfactory systems of human beings and animals have the abilities to sense and distinguish varieties of odors. In this study, a bioelectronic nose was constructed by fixing biological tissues onto the surface of light-addressable potentiometric sensor (LAPS) to mimic human olfaction and realize odor differentiation. The odorant induced potentials on tissue-semiconductor interface was analyzed by sensory transduction theory and sheet conductor model. The extracellular potentials of the receptor cells in the olfactory epithelium were detected by LAPS. Being stimulated by different odorants, such as acetic acid and butanedione, olfactory epithelium activities were analyzed on basis of local field potentials and presented different firing modes. The signals fired in different odorants could be distinguished into different clusters by principal component analysis (PCA). Therefore, with cellular populations well preserved, the epithelium tissue and LAPS hybrid system will be a promising neuron chip of olfactory biosensors for odor detecting.  相似文献   

2.
Ong RC  Stopfer M 《Chemical senses》2012,37(5):455-461
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain.  相似文献   

3.
This article is part of a Special Issue “Chemosignals and Reproduction”.Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.  相似文献   

4.
Using the whole-cell mode of the patch-clamp technique, we recorded action potentials, voltage-activated cationic currents, and inward currents in response to water-soluble and volatile odorants from receptor neurons in the lateral diverticulum (water nose) of the olfactory sensory epithelium of Xenopus laevis. The resting membrane potential was -46.5 +/- 1.2 mV (mean +/- SEM, n = 68), and a current injection of 1-3 pA induced overshooting action potentials. Under voltage-clamp conditions, a voltage-dependent Na+ inward current, a sustained outward K+ current, and a Ca2+-activated K+ current were identified. Application of an amino acid cocktail induced inward currents in 32 of 238 olfactory neurons in the lateral diverticulum under voltage-clamp conditions. Application of volatile odorant cocktails also induced current responses in 23 of 238 olfactory neurons. These results suggest that the olfactory neurons respond to both water-soluble and volatile odorants. The application of alanine or arginine induced inward currents in a dose-dependent manner. More than 50% of the single olfactory neurons responded to multiple types of amino acids, including acidic, neutral, and basic amino acids applied at 100 microM or 1 mM. These results suggest that olfactory neurons in the lateral diverticulum have receptors for amino acids and volatile odorants.  相似文献   

5.
Although the family of genes encoding for olfactory receptors was identified more than 15 years ago, the difficulty of functionally expressing these receptors in an heterologous system has, with only some exceptions, rendered the receptive range of given olfactory receptors largely unknown. Furthermore, even when successfully expressed, the task of probing such a receptor with thousands of odors/ligands remains daunting. Here we provide proof of concept for a solution to this problem. Using computational methods, we tune an electronic nose to the receptive range of an olfactory receptor. We then use this electronic nose to predict the receptors' response to other odorants. Our method can be used to identify the receptive range of olfactory receptors, and can also be applied to other questions involving receptor–ligand interactions in non-olfactory settings.  相似文献   

6.
Wu C  Chen P  Yu H  Liu Q  Zong X  Cai H  Wang P 《Biosensors & bioelectronics》2009,24(5):1498-1502
This paper presents a novel biomimetic olfactory biosensor for the study of olfactory transduction mechanisms on the basis of light addressable potentiometric sensor (LAPS), in which rat olfactory sensory neurons (OSNs) are used as sensing elements. Rat OSNs are cultured on the surface of LAPS chip. To validate the origin of the electrical signals recorded by LAPS, the inhibitory effect of MDL12330A to the olfactory signals of OSNs is tested, which is the specific inhibitor of adenylyl cyclase. The enhancive effect of LY294002 to the responses of OSNs is also investigated, which is the specific inhibitor of phosphatidylinositol 3-kinase (PI3K). The results show that this hybrid biosensor can record the responses of OSNs to odours efficiently in a non-invasive way for a long term, and the responses can be inhibited by MDL12330A and enhanced by LY294002. All these results demonstrate that this hybrid biosensor can be used to monitor electrophysiology of OSNs in a non-invasive way and suggest it could be a promising tool for the study of olfactory transduction mechanisms.  相似文献   

7.
Odors affect the excitability of an olfactory neuron by altering membrane conductances at the ciliated end of a single, long dendrite. One mechanism to increase the sensitivity of olfactory neurons to odorants would be for their dendrites to support action potentials. We show for the first time that isolated olfactory dendrites from the mudpuppy Necturus maculosus contain a high density of voltage-activated Na+ channels and produce Na-dependent action potentials in response to depolarizing current pulses. Furthermore, all required steps in the transduction process beginning with odor detection and culminating with action potential initiation occur in the ciliated dendrite. We have previously shown that odors can modulate Cl- and K+ conductances in intact olfactory neurons, producing both excitation and inhibition. Here we show that both conductances are also present in the isolated, ciliated dendrite near the site of odor binding, that they are modulated by odors, and that they affect neuronal excitability. Voltage- activated Cl- currents blocked by 4,4'-diisothiocyanatostilbene-2,2' disulfonic acid and niflumic acid were found at greater than five times higher average density in the ciliated dendrite than in the soma, whereas voltage-activated K+ currents inhibited by intracellular Cs+ were distributed on average more uniformly throughout the cell. When ciliated, chemosensitive dendrites were stimulated with the odorant taurine, the responses were similar to those seen in intact cells: Cl- currents were increased in some dendrites, whereas in others Cl- or K+ currents were decreased, and responses washed out during whole-cell recording. The Cl- equilibrium potential for intact neurons bathed in physiological saline was found to be -45 mV using an on-cell voltage- ramp protocol and delayed application of channel blockers. We postulate that transduction of some odors is caused by second messenger-mediated modulation of the resting membrane conductance (as opposed to a specialized generator conductance) in the cilia or apical region of the dendrite, and show how this could alter the firing frequency of olfactory neurons.  相似文献   

8.
Dulac C 《Neuron》2006,50(6):816-818
Natural scents are mixtures of tens to hundreds of individual chemical compounds. While previous studies have investigated how the olfactory bulb responds to simple odorants, how the nose and the brain respond to and interpret complex mixtures is less clear. In a paper in this issue of Neuron, Lin et al. combined gas chromatography and intrinsic signal imaging to examine the responses of individual olfactory bulb glomeruli in the mouse to natural odors and their component parts.  相似文献   

9.
There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.  相似文献   

10.
The detection of odorants in vertebrates is mediated by chemosensory neurons that reside in the olfactory epithelium of the nose. In land-living species, the hydrophobic odorous compounds inhaled by the airstream are dissolved in the nasal mucus by means of specialized globular proteins, the odorant-binding proteins (OBPs). To assure the responsiveness to odors of each inhalation, a rapid removal of odorants from the microenvironment of the receptor is essential. In order to follow the fate of OBP/odorant complexes, a recombinant OBP was fluorescently labeled, loaded with odorous compounds, and applied to the nose of a mouse. Very quickly, labeled OBP appeared inside the sustentacular cells of the epithelium. This uptake occurred only when the OBP was loaded with appropriate odorant compounds. A search for candidate transporters that could mediate such an uptake process led to the identification of the low density lipoprotein receptor Lrp2/Megalin. In the olfactory epithelium, megalin was found to be specifically expressed in sustentacular cells and the Megalin protein was located in their microvilli. In vitro studies using a cell line that expresses megalin revealed a rapid internalization of OBP/odorant complexes into lysosomes. The uptake was blocked by a Megalin inhibitor, as was the internalization of OBPs into the sustentacular cells of the olfactory epithelium. The results suggest that a Megalin-mediated internalization of OBP/odorant complexes into the sustentacular cells may represent an important mechanism for a rapid and local clearance of odorants.  相似文献   

11.
12.
The neurophysiology and antennal lobe projections of olfactory receptor neurons housed within short trichoid sensilla of female Heliothis virescens F. (Noctuidae: Lepidoptera) were investigated using a combination of cut-sensillum recording and cobalt-lysine staining techniques. Behaviorally relevant odorants, including intra- and inter-sexual pheromonal compounds, plant and floral volatiles were selected for testing sensillar responses. A total of 184 sensilla were categorized into 25 possible sensillar types based on odor responses and sensitivity. Sensilla exhibited both narrow (responding to few odors) and broad (responding to many odors) response spectra. Sixty-six percent of the sensilla identified were stimulated by conspecific odors; in particular, major components of the male H. virescens hairpencil pheromone (hexadecanyl acetate and octadecanyl acetate) and a minor component of the female sex pheromone, (Z)-9-tetradecenal. Following characterization of the responses, olfactory receptor neurons within individual sensilla were stained with cobalt lysine (N=39) and traced to individual glomeruli in the antennal lobe. Olfactory receptor neurons with specific responses to (Z)-9-tetradecenal, a female H. virescens sex pheromone component, projected to the female-specific central large female glomerulus (cLFG) and other glomeruli. Terminal arborizations from sensillar types containing olfactory receptor neurons sensitive to male hairpencil components and plant volatiles were also localized to distinct glomerular locations. This information provides insight into the representation of behaviorally relevant odorants in the female moth olfactory system. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
Combinatorial receptor codes for odors   总被引:64,自引:0,他引:64  
Malnic B  Hirono J  Sato T  Buck LB 《Cell》1999,96(5):713-723
The discriminatory capacity of the mammalian olfactory system is such that thousands of volatile chemicals are perceived as having distinct odors. Here we used a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors. We found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs. Thus, the olfactory system uses a combinatorial receptor coding scheme to encode odor identities. Our studies also indicate that slight alterations in an odorant, or a change in its concentration, can change its "code," potentially explaining how such changes can alter perceived odor quality.  相似文献   

14.
The human olfactory systems recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein in the ciliary membrane of olfactory neurons. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed, and characterized some of the human olfactory receptors from chromosome 17. Our results show that a receptor protein is capable of recognizing the particular chemical substructure of an odor molecule and, therefore, is able to respond only to odorants that have a defined molecular structure. These findings represent the beginning of the molecular understanding of odorant recognition in humans. In the future, this knowledge could be used for the design of synthetic ideal receptors for specific odors (biosensors), or the perfect odor molecule for a given receptor.  相似文献   

15.
Through the sense of smell mammals can detect and discriminate between a large variety of odorants present in the surrounding environment. Odorants bind to a large repertoire of odorant receptors located in the cilia of olfactory sensory neurons of the nose. Each olfactory neuron expresses one single type of odorant receptor, and neurons expressing the same type of receptor project their axons to one or a few glomeruli in the olfactory bulb, creating a map of odorant receptor inputs. The information is then passed on to other regions of the brain, leading to odorant perception. To understand how the olfactory system discriminates between odorants, it is necessary to determine the odorant specificities of individual odorant receptors. These studies are complicated by the extremely large size of the odorant receptor family and by the poor functional expression of these receptors in heterologous cells. This article provides an overview of the methods that are currently being used to investigate odorant receptor–ligand interactions.  相似文献   

16.
Moths possess highly tuned olfactory capabilities, which can detect very low concentrations of pheromonal odorants. Much is known about the structure and function of the moth olfactory system with respect to detection of pheromones. However, we lack an understanding of the broader olfactory system, in particular, to what degree are moths capable of detecting and discriminating odorants that are not components of pheromone blends. Here we describe a methodology used to investigate the discriminability of nonpheromonal odors in moths. In a series of experiments we show that the moth Manduca sexta can (1) discriminate a number of different odors but (2) that methyl jasmonate, neither readily conditions to a food reward nor is it readily discriminated from another odor. The lack of a response to methyl jasmonate may be related to its role in host plant defense. This work provides a basis for future mapping of physiological and pharmacological studies of nonpheromonal coding in insects onto learned behavioral responses to those odorants.  相似文献   

17.
Fruit flies are attracted by a diversity of odors that signal the presence of food, potential mates, or attractive egg-laying sites. Most Drosophila olfactory neurons express two types of odorant receptor genes: Or83b, a broadly expressed receptor of unknown function, and one or more members of a family of 61 selectively expressed receptors. While the conventional odorant receptors are highly divergent, Or83b is remarkably conserved between insect species. Two models could account for Or83b function: it could interact with specific odor stimuli independent of conventional odorant receptors, or it could act in concert with these receptors to mediate responses to all odors. Our results support the second model. Dendritic localization of conventional odorant receptors is abolished in Or83b mutants. Consistent with this cellular defect, the Or83b mutation disrupts behavioral and electrophysiological responses to many odorants. Or83b therefore encodes an atypical odorant receptor that plays an essential general role in olfaction.  相似文献   

18.
Odorants evoke an outward current in cultured lobster olfactory receptor neurons voltage clamped at -60 mV. The reversal potential of the outward current is independent of the reversal potential of potassium, but shifts with imposed changes in the reversal potential of chloride. The slope of the current-voltage relationship is negative, suggesting that the current is mediated by the odorant suppressing a steady-state conductance. Anthracene-9-carboxylic acid, a specific chloride channel blocker, reversibly inhibits the steady-state conductance. Local application of odorants to the outer dendrites evokes a hyperpolarizing receptor potential in lobster olfactory receptor neurons current-clamped at -70 mV in situ. Consistent with the current characterized in the cultured cells, hyperpolarizing receptor potentials in some cells are voltage sensitive, blocked by anthracene-9-carboxylic acid and associated with a decrease in membrane conductance. These results support the hypothesis that odorants suppress a steady-state chloride conductance in lobster olfactory receptor neurons. Evidence that the chloride conductance can coexist with a 4-aminopyridine-blockable potassium conductance reported earlier in these cells suggests that two distinct mechanisms can mediate odorant-evoked inhibition in lobster olfactory receptor neurons.  相似文献   

19.
Although many studies have reported that odorants can elicit inhibitory responses as well as excitatory responses in vertebrate olfactory receptor neurons, the cellular mechanisms that underlie this inhibition are unclear. Here we examine the inhibitory effect of odorants on newt olfactory receptor neurons using whole cell patch clamp recording. At high concentrations, odorant stimulation decreased the membrane conductance and inhibited depolarization. Various odorants (anisole, isoamyl acetate, cineole, limonene and isovaleric acid) suppressed the depolarizing current in a dose-dependent manner. Furthermore, one odorant could suppress the depolarization caused by another odorant. The depolarization caused by isoamyl acetate was inhibited by anisole in cells that were excited by isoamyl acetate but not by anisole. Odorants were able to hyperpolarize cells that were depolarized by cAMP-induced conductance. Given that this inhibitory effect of odorants can affect excitation caused by other odorants, we suggest that it might play a role in coding odorants in olfactory receptor neurons.  相似文献   

20.
Scott JW 《Chemical senses》2006,31(2):119-130
The act of sniffing increases the air velocity and changes the duration of airflow in the nose. It is not yet clear how these changes interact with the intrinsic timing within the olfactory bulb, but this is a matter of current research activity. An action of sniffing in generating a high velocity that alters the sorption of odorants onto the lining of the nasal cavity is expected from the established work on odorant properties and sorption in the frog nose. Recent work indicates that the receptor properties in the olfactory epithelium and olfactory bulb are correlated with the receptor gene expression zones. The responses in both the epithelium and the olfactory bulb are predictable to a considerable extent by the hydrophobicity of odorants. Furthermore, receptor expression in both rodent and salamander nose interacts with the shapes of the nasal cavity to place the receptor sensitivity to odorants in optimal places according to the aerodynamic properties of the nose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号