首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
This study gives an overview of status and distribution of signal crayfish (Pacifastacus leniusculus), the first NICS in Estonia and its influence on native noble crayfish (Astacus astacus) populations. The first specimen of signal crayfish was caught during the monitoring of noble crayfish in North Estonia in 2008. The signal crayfish has since been found in three additional sites. Test fishing has indicated that the abundance of signal crayfish has been fluctuating between years and among localities. It has had strong negative impact on abundance of one noble crayfish population. The disconnected distribution of signal crayfish strongly suggests that these populations are the result of human-assisted introductions. Real-time PCR analyses proved that signal crayfish carry the causative agent of the crayfish plague, an oomycete Aphanomyces astaci, thus contributing to its spread. Mortalities in noble crayfish populations had been caused by A. astaci strains from A, B and E genotype group.  相似文献   

3.
In order to understand the large‐scale distribution of microbial populations simultaneously and their relationship with environmental parameters, flow cytometry was used to analyse samples collected from 46 stations in the coastal waters of Qingdao in spring, 2007. The distribution of virus was significantly and positively correlated with heterotrophic bacteria. Two groups of picophytoplankton (Synechococcus and picoeukaryotes) were detected; however, Prochlorococcus was not found. Picoeukaryotes and nanophytoplankton were abundant in the near‐shore waters, whereas Synechococcus was abundant in the off‐shore areas. No variation was found in vertical distribution of virus, heterotrophic bacteria, Synechococcus and nanophytoplankton abundances, except picoeukaryotes abundance in the bottom layer was dramatically lower than that in the upper layers. Correlation analyses indicated that the relationship between abiotic variables and heterotrophic bacteria, pico‐ and nanophytoplankton was closer than that between abiotic variables and virioplankton. Temperature and nutrients were the synchronous factors controlling the growth of heterotrophic bacteria, pico‐ and nanophytoplankton in the coastal waters of Qingdao in spring. The results suggested that synergistic and antagonistic effects existed among microbial groups.  相似文献   

4.
The non-indigenous red swamp crayfish (Procambarus clarkii) has been shown to be a threat for amphibian conservation. Many amphibian species breed in temporary ponds to diminish predation risk as such ecosystems are free of large predators. However P. clarkii, occurring as an invasive species in the Camargue delta, can readily disperse on the ground and thus colonize isolated ponds. We studied the current impact of the exotic crayfish on the reproductive success of the Mediterranean tree frog (Hyla meridionalis). In a mesocosm experiment, we tested the effect of two crayfish densities (1 and 3 crayfish/m2) on tadpole abundance. We also tested in a field experiment, within a temporary pond, the crayfish’s predation on the tree frog’s eggs. Finally, we developed site occupancy models using data from 20 ponds to assess the effect of crayfish abundance on tadpole abundance. Neither the experiments, nor the site occupancy models showed a negative impact of the current crayfish abundance on the tree frog populations breeding in ponds. We found that recorded crayfish densities were lower than in other areas where crayfish has impacted amphibian populations, but we hypothesize that current crayfish abundance in the area may increase in the future, thus impacting tree frog populations.  相似文献   

5.
PER NYSTR M 《Freshwater Biology》2005,50(12):1938-1949
1. I tested the hypothesis that the potential for non‐lethal effects of predators are more important for overall performance of the fast‐growing exotic signal crayfish (Pacifastacus leniusculus Dana) than for the slower growing native noble crayfish (Astacus astacus L.). I further tested if omnivorous crayfish switched to feed on less risky food sources in the presence of predators, a behaviour that could reduce the feeding costs associated with predator avoidance. 2. In a 2 month long outdoor pool experiment, I measured behaviour, survival, cheliped loss, growth, and food consumption in juvenile noble or signal crayfish in pools with either a caged predatory dragonfly larvae (Aeshna sp.), a planktivorous fish that do not feed on crayfish (sunbleak, Leucaspius delineatus Heckel), or predator‐free controls. Crayfish had access to multiple food sources: live zooplankton, detritus and periphyton. Frozen chironomid larvae were also supplied ad libitum outside crayfish refuges, simulating food in a risky habitat. 3. Crayfish were mainly active during hours of darkness, with signal crayfish spending significantly more time outside refuges than noble crayfish. The proportion of crayfish outside refuges varied between crayfish species, time and predator treatment, with signal crayfish spending more time in refuges at night in the presence of fish. 4. Survival in noble crayfish was higher than in signal crayfish, and signal crayfish had a higher frequency of lost chelipeds, indicating a high level of intraspecific interactions. Crayfish survival was not affected by the presence of predators. 5. Gut‐contents analysis and stable isotope values of carbon (δ13C) and nitrogen (δ15N) indicated that the two crayfish species had similar food preferences, and that crayfish received most of their energy from feeding on invertebrates (e.g. chironomid larvae), although detritus was the most frequent food item in their guts. Signal crayfish guts were more full than those of noble crayfish, but signal crayfish in pools with fish contained significantly less food and fewer had consumed chironomids compared with predator‐free controls. Length increase of signal crayfish (35%) was significantly higher than of noble crayfish (20%), but signal crayfish in pools with fish grew less than in control pools. 6. This short‐term study indicates that fish species that do not pose a lethal threat to an organism may indirectly cause reductions in growth by affecting behaviour and feeding. This may occur even though prey are omnivorous and have access to and consume multiple food sources. These non‐lethal effects of predators are expected to be particularly important in exotic crayfish species that show a general response to fish, have high individual growth rates, and when their feeding on the most profitable food source is reduced.  相似文献   

6.
We studied the impact of ambient levels of solar ultraviolet B (UVB) radiation on the planktonic microbial food web (viruses, heterotrophic bacteria, heterotrophic nanoflagellates and ciliates) of a high-mountain lake (2417 m above sea level) under in situ conditions for 16 days. Enclosures of 1 m3 receiving either the full sunlight spectrum or sunlight without UVB radiation were suspended at the lake surface. We found that the abundance of heterotrophic nanoflagellates was always lower in the +UVB treatment than in the -UVB one. In addition, bacterial consumption, measured by the disappearance of fluorescently labelled bacteria, was significantly (P < 0.05) reduced in the +UVB treatment. The abundance of non-filamentous bacteria (<10 m long) was also lower in the +UVB treatment, suggesting a direct effect of UVB on their growth. This was supported by the significantly (P < 0.05) lower cell-specific activity ([3H])thymidine incorporation) found on the fifth day of the experiment. In contrast, UVB radiation had no effect on filamentous bacteria (>1 m long), which represented only a small fraction of the total abundance (<4%), but up to 70% of the total bacterial biovolume. Ciliates, mainly Urotricha pelagica and Urotricha furcata, were less impacted by UVB radiation, although the net growth rate during the first week of the experiment was lower in the +UVB treatment than in the -UVB one (0.22 and 0.39 day-1, respectively). The abundance of virus-like particles during the first week of the experiment was higher in the -UVB treatment. After reaching the maximum value for the interaction viruses x bacteria, viral abundance decreased dramatically (by 85%) in both treatments with a decay rate of 0.017 h-1. This study illustrates the complexity in assessing the impact of UVB radiation when more than one trophic level is considered and indicates the existence of different sensitivity to UVB radiation among components of the microbial food web.   相似文献   

7.
Summary Management of noble crayfish fisheries varies considerably between countries. Minimum legal harvest sizes range from 70 to 120 mm TL. National, regional and local crayfish harvesting regulations exist. The variations in regulations are strongly influenced by traditions for crayfish harvest and consumption. The current harvest of noble crayfish in Europe is approximately 220 tonnes; this is less than 10% of the pre-plague historic record. Improved fishery regulations may potentially increase the annual harvest. Because of allometric growth, noble crayfish increase by some 40–50% in weight by increasing in total length from 90 to 100 mm. Stock structure and stock characteristics vary between localities. Female noble crayfish mature at a size of 62–85 mm TL and the number of attached eggs is low, i.e. less than 200. Mean size of females in trap catches may be lower than mean size at maturity, indicating vulnerability to recruitment overfishing. There is a market for crayfish smaller than 90 mm TL, both for consumption and for stocking, and these often constitute more than 75% of trap catches. Regulations for catching crayfish are thus needed in order to prevent recruitment overfishing and to sustain high and stable yields. The authors therefore recommend a national minimum harvest size of 90–95 mm TL. The catching season should start after the first moult and after the brood have left their mother, and terminate when the mating period approaches in September. In localities with high exploitation a short harvest season (2–3 weeks) is recommended in the early August intermoult period. However, crayfish harvest regulations should also account for the variation that occurs between local stocks, and if necessary exemptions from the national regulations should be given where appropriate.  相似文献   

8.
1. In a correlative study, we investigated the relative importance of fish predation, refuge availability and resource supply in determining the abundance and size distributions of the introduced and omnivorous signal crayfish (Pacifastacus leniusculus) in lakes and streams. Moreover, the biomass and food selection of predatory fish was estimated in each habitat type and stable isotopes of carbon and nitrogen were measured in perch (Perca fluviatilis), the dominant predator in the lakes, and in its potential food sources (crayfish, juvenile roach and isopods). 2. In lakes, crayfish were the most frequent prey in large perch (46%), followed by other macroinvertebrates (26%, including the isopod Asellus aquaticus) and small fish (25%). Crayfish and fish dominated the gut contents of large perch with respect to biomass. Nitrogen signatures showed that perch were one trophic level above crayfish (approx. 3.4‰) and a two‐source mixing model using nitrogen isotope values indicated that crayfish (81%) contributed significantly more to perch isotope values than did juvenile roach (19%). A positive correlation was found between the abundance of crayfish and the biomass of large perch. Crayfish abundance in lakes was also positively correlated with the proportion of cobbles in the littoral zone. Lake productivity (chlorophyll a) was positively correlated with crayfish size, but not with crayfish abundance. 3. In streams, brown trout (Salmo trutta) were the most abundant predatory fish. Gut contents of large trout in a forested stream showed that terrestrial insects were the most frequently found prey (60%), followed by small crayfish (27%) and isopods (27%). In contrast to lakes, the relative abundance of crayfish was negatively correlated with the total biomass of predatory fish and with total biomass of trout. However, abundance of crayfish at sites with a low biomass of predatory fish varied considerably and was related to substratum grain size, with fewer crayfish being caught when the substratum was sandy or dominated by large boulders. The mean size of crayfish was greater at stream sites with a high standing stock of periphyton, but neither predator biomass nor substratum grain size was correlated with crayfish size. 4. Our results suggest that bottom‐up processes influence crayfish size in lakes and streams independent of predator biomass and substratum availability. However, bottom‐up processes do not influence crayfish abundance. Instead, substratum availability (lakes) and interactions between predation and substratum grain size (streams) need to be considered in order to predict crayfish abundance.  相似文献   

9.
1. Many fish stocks have declined, because of overharvesting, habitat destruction and introduced species. Despite efforts to rehabilitate some of these stocks, not all are responding or are recovering only slowly. 2. In freshwater systems, introduced crayfish are often problematic, and it has been suggested that their egg predation could reduce recruitment in depleted stocks of native fish. 3. Here, we report the results of a field experiment, using experimental cages, on the extent of predation on eggs of great Arctic charr (Salvelinus umbla) in Lake Vättern, Europe’s fifth largest lake. Here, the great Arctic charr has declined dramatically and is listed as critically endangered. 4. We were able to partition the total loss rate of eggs into background mortality, predation by introduced signal crayfish (Pacifastacus leniusculus) and predation by native fish. The mortality rate of charr eggs because of crayfish was estimated at more than five times that because of native fish. Of the total loss of eggs, 80% is believed to be caused by crayfish and 14% by fish, with 6% being natural background mortality. 5. In a worst case scenario, our data infer that only 25% of the original number of eggs would survive, compared with 75% in the absence of crayfish. This could impair recovery of the stock of the endangered great Arctic charr in Lake Vättern. 6. Contrary to earlier claims that crayfish predation on eggs of great Arctic charr is insignificant, our results indicate that crayfish predation may exceed fish predation and suggest that the abundance of signal crayfish on the spawning sites of great Arctic charr should be managed.  相似文献   

10.
The impact of the Common Osier (Salix viminalis L.) root system on number (CFU) of heterotrophic bacteria and their production in a soil-willow filter was examined. The Osier rhizosphere was found to be suitable habitat for growth of the examined microbial group, and the root system stimulated development of heterotrophic bacteria. The rhizosphere bacteria to control soil bacteria (R:C) ratio oscillated between 2.48 and 2.75 depending on the location of sample collection. The highest abundance of bacteria as well as highest bacterial production was observed at location I, near sewage discharge onto the plot. There was a significant positive correlation between the number of heterotrophic bacteria and the bacterial production.  相似文献   

11.
12.
13.
The introduced North-American signal crayfish (Pacifastacus leniusculus) has become widespread throughout Europe where it has often replaced the native noble crayfish (Astacus astacus). The impact of this replacement on ecosystem processes in boreal lakes is still largely unknown. We compared the trophic niches of these two crayfish species in 16 small to medium sized boreal lakes in southern Finland; eight lakes with noble crayfish and eight lakes where the native crayfish populations had been lost and replaced by signal crayfish. We analysed carbon and nitrogen stable isotopes from samples of the crayfish and their putative food sources, and used stable isotope models to compare trophic niche widths of the two species of crayfish and to quantify the food sources used by them. At species level the signal crayfish exhibited a substantially larger trophic niche than that of the noble crayfish, but within-lake populations of the species did not differ in their niche widths. The isotopic niches of the two species strongly overlapped, and while the estimated proportions of food resources (profundal and littoral macroinvertebrates, terrestrial leaf detritus and macrophytes) used by crayfish varied considerably among individual populations, they did not differ consistently between the species. Our results suggest that, contrary to often expressed concerns, replacement of lost noble crayfish populations by the signal crayfish may not greatly alter the littoral food web structure in boreal lakes.  相似文献   

14.
1. The seasonal development of crustacean zooplankton, heterotrophic nanoflagellates (HNF) and bacteria was examined in Grosser Binnensee, a shallow, eutrophic lake in northern Germany. The grazing impact of Daphnia on bacteria and nanoflagellates was estimated from field data on population abundances and from clearance rates obtained in laboratory experiments. 2. The seasonal succession of zooplankton showed distinct peaks of Daphnia magna, cyclopopid copepods, Bosmina longirostris and Daphnia galeata and D. hynlina. The population dynamics of Dapfinia had the strongest impact on all sestonic components. Daphnia maxima coincided with clearwater phases, and were negatively correlated with particulate organic carbon (POC), HNF and phytoplankton. Bacterial abundance was only slightly affected although daphnids were at times more important as bacterial consumers than HNF, as estimated from measured bacterial clearance rates. Other crustaceans (copepods, Bosmina) were probably of minor importance as grazers of bacteria and nanoplankton. 3. HNF abundance varied from 550 ml?1 to more than 30000 ml?1. HNF appeared to be suppressed by daphnids and reached highest densities when copepods dominated the metazooplankton. The variation in HNF abundance was not reflected in the concentration of heterotrophic bacteria, which fluctuated rather irregularly between 5 and 20 ± 106 ml?1. Long filamentous bacteria which were probably resistant to protozoan grazing, however, appeared parallel to the development of HNF. These bacterial cells, although small in number, could comprise more than 30% of the total bacterial biomass.  相似文献   

15.
Female crayfish stores male gametes after mating until the beginning of egg laying and fertilization. The aim of the present study was to investigate the duration of post-mating spermatophore storage as well as the timing and temperature of spawning in two crayfish species of economic importance, namely the signal crayfish Pacifastacus leniusculus and the noble crayfish Astacus astacus. Results showed that the average duration of the post-mating spermatophore storage is significantly (P<0.05) longer in the noble crayfish (34.6±1.7 days, range: 19 to 60 days) than the signal crayfish (3.9±0.5 days, range: 1 to 18 days). The highest percentages of the post-mating spermatophore storage duration in the signal crayfish (46.5%) and the noble crayfish (44.5%) were 1 and 31 to 40 days, respectively. While there is an overlap in the timings of mating and egg laying in the signal crayfish, these two reproductive processes were not observed at the same days in the noble crayfish and there was at least 2 weeks interval between last mating and first egg laying individuals. Average mating and egg laying temperatures were significantly (P<0.05) higher in the signal crayfish than the noble crayfish. The average temperatures for mating in both species were significantly (P<0.05) higher than the temperatures that they utilized for egg laying. In conclusion, female noble crayfish stores post-mating spermatophores a longer duration compared with the signal crayfish. Also, the signal crayfish mates and lays egg in temperatures that are higher than the noble crayfish. Spawning season is shorter in the signal crayfish compared with the noble crayfish. The results of present study provide information contributing to the crayfish broodstock management in aquaculture.  相似文献   

16.
《Zoology (Jena, Germany)》2015,118(6):424-432
Invasion is one of the most consequential phenomena affecting the distribution of native species. Few in number of species, European crayfish are losing the competition with introduced North American crayfish. The spiny-cheek crayfish, Orconectes limosus, is an outstanding example, successfully competing against the native narrow-clawed crayfish, Astacus leptodactylus. For four years, we collected data regarding crayfish occurrences, their relative abundance, and the structure of populations in the ongoing colonisation process of O. limosus in the lower Danube. The mature females of both invasive and indigenous crayfish species were analysed with respect to biometry and production of oocytes in relation to the dynamics of invasion. The interspecific comparisons showed no significant differences regarding body size, with an average of approximately 102 mm total length and 31 g wet weight for both species. However, the fecundity of the indigenous species was found to be constant throughout the investigated area, whereas the number of eggs produced by the invasive females was significantly increased at the active front of the invasion. The maximum number of ovarian eggs found was 887 and 1156 in the indigenous species and the invasive species, respectively. We propose the scenario that the invasive species, which carries the deadly crayfish plague, creates an ecological advantage by reducing the populations of indigenous crayfish. Subsequently, the invasive females opportunistically use the available resources to enhance their fecundity, resulting in the acute growth of populations. However, the long-term competitiveness and colonisation success of O. limosus still remain in question.  相似文献   

17.
Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9 × 103 cells ml–1) and ciliates (6.1 cells ml–1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9 × 106 bacteria 1–1h–1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria. Correspondence: C. Amblard.  相似文献   

18.
Patterns in benthic food webs: a role for omnivorous crayfish?   总被引:10,自引:0,他引:10  
1. The biomass and species richness of macrophytes and invertebrates in artificial ponds at two sites in southern Sweden (twenty-one ponds at each site) were investigated. Alkalinity was high at one site (H ponds) and low at the other site (L ponds). The ponds chosen had different densities of signal crayfish (Pacifastacus leniusculus), with mean crayfish abundance (estimated by trapping and expressed as catch per unit effort) significantly higher in the L ponds (10.7) than in the H ponds (4.9). Macrophytes, invertebrates, the amount of periphyton on stones and the organic content of the sediment were determined in each pond. 2. Macrophyte biomass, cover and species richness declined with increasing crayfish density. Macrophyte species composition differed between ponds and was related to crayfish abundance. 3. The total biomass of invertebrates and the biomass of herbivorous/detritivorous invertebrates declined with increasing crayfish abundance, but the biomass of predatory invertebrates declined only in the L ponds. The relative biomass of Gastropoda and Odonata declined in ponds where crayfish were abundant. In ponds where crayfish were abundant the invertebrate fauna was dominated by sediment-dwelling taxa (Sialis (H and L ponds) and Chironomidae (H ponds)). 4. The number of invertebrate taxa in macrophytes declined with increasing crayfish abundance. The percentage of macrophyte-associated invertebrate taxa differed between ponds, but also between sites. The relative biomass of Gastropoda declined in H ponds where crayfish were abundant. In H ponds Trichoptera or Gammarus sp. and Heteroptera dominated where crayfish were abundant, whereas Odonata dominated in L ponds with abundant crayfish. 5. The organic content of the sediment decreased in ponds with high crayfish densities, while the amount of periphyton on stones was not related to crayfish density. 6. We conclude that the signal crayfish may play an important role as a keystone consumer in pond ecosystems, but lower trophic levels did not respond to changes in the abundance of the crayfish according to the trophic cascade model. Omnivorous crayfish may decouple the cascading effect.  相似文献   

19.
The role of omnivorous crayfish in littoral communities   总被引:5,自引:0,他引:5  
Dorn NJ  Wojdak JM 《Oecologia》2004,140(1):150-159
Large omnivorous predators may play particularly important roles determining the structure of communities because of their broad diets and simultaneous effects on multiple trophic levels. From June 2001 to June 2002 we quantified community structure and ecosystem attributes of six newly establishing freshwater ponds (660 m2 each) after populations of omnivorous crayfish (Orconectes virilis) were introduced to three of the ponds. Crayfish preyed heavily on fish eggs in this experiment, which reduced recruitment of young-of-year fish. This effect indirectly enhanced zooplankton biomass in crayfish ponds. Phytoplankton abundance exhibited a more complex pattern and was probably influenced by non-trophic (e.g., bioturbation) effects of crayfish. Peak dissolved oxygen levels were lower in the crayfish ponds indicating that they had lower primary production: respiration ratios. Metaphytic algae were strongly affected by crayfish presence; filamentous greens quickly disappeared and the blue-green Gleotrichia (a less preferred food item) eventually dominated the composition in crayfish ponds. Chara vulgaris and vascular macrophytes established 34% cover in control ponds by June 2002, but were not able to establish in crayfish ponds. Two important periphyton herbivores (tadpoles and gastropods) were absent or significantly reduced in the crayfish ponds, but periphyton differences were temporally variable and not easily explained by a simple trophic cascade (i.e., crayfish—snails and tadpoles—periphyton). Our results indicate that crayfish can have dramatic direct and indirect impacts on littoral pond communities via feeding links with multiple trophic levels (i.e., fish, invertebrates, and plants) and non-trophic activities (bioturbation). Although the effects of omnivorous crayfish on littoral communities can be large, their complex effects do not fit neatly into current theories about trophic interactions or freshwater community structure.  相似文献   

20.
The fecundity of two British populations of the freshwater crayfish Austropotamobius pallipes was examined. A number of maternal-size-related variables were correlated with counts of pleopodal eggs per female. Egg numbers did not decrease with increasing time from initial laying. Ovarian egg counts were considerably higher than expected pleopodal egg numbers. The influence of locational parameters is discussed and regional comparisons made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号