首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This review describes the features of gene amplification associated with the selection of multidrug-resistant cell lines. Some of these lines carry multiple copies of the MDR1 gene that encodes P-glycoprotein, a broad specificity efflux pump. The MDR1 gene was initially identified as the common component of the amplicons found in multidrug-resistant cell lines selected with different drugs. Subsequent studies have established that increased MDR1 expression is sufficient for the multidrug-resistant phenotype. MDR1-containing amplicons may include a number of additional transcribed genes that do not appear to contribute to multidrug resistance. MDR1 amplification is associated with specific chromosomal changes and apparently non-random recombinational events. Increased expression of the MDR1 gene, however, does not necessarily require gene amplification. Although amplification of the MDR1 gene has not been found in clinical tumor samples, increased expression of this gene is commonly observed in different types of cancer and appears to be a significant marker of clinical drug resistance.  相似文献   

3.
Four members of the endothelin family of vasoactive and mitogenic peptides have been identified: human endothelins 1, 2, and 3 (ET1, ET2, and ET3, respectively) and mouse vasoactive intestinal contractor (VIC). To characterize the mRNA encoding ET2, a 192-bp fragment of the ET2 gene, amplified by the polymerase chain reaction from human genomic DNA, was used to screen cell lines and tissues for ET2 gene expression. ET2 mRNA was detected in a cell line (HTB119) derived from a human lung small cell carcinoma, and an ET2 cDNA was cloned from a cDNA library prepared from HTB119 mRNA. DNA prepared from human-mouse somatic hybrid cell lines was used to assign the gene encoding ET2 (EDN2) to the 1p21----1pter region of chromosome 1, demonstrating that EDN2 is not linked to genes encoding ET1 (EDN1; chromosome 6) and ET3 (EDN3; chromosome 20). Southern blot hybridization revealed a single gene in human and rat genomes that hybridized with the ET2 gene fragment, and the rat gene was cloned. The endothelin peptide encoded by the rat gene differed from ET2 at 1 of 21 residues and was identical to mouse VIC. We conclude that VIC is the mouse and rat analogue of the human ET2 gene.  相似文献   

4.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

5.
To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O6-methylguanine-DNA-methyltransferase (MGMT) and multidrug resistance gene (MDR1) increase resistance to 1,3-Bis(2-Chloroethy1)-1-Nitrosourea (BCNU) and P-glycoprotein effluxed drugs, the present authors obtained a full length cDNA fragment encoding MGMT from liver tissue of a patient with cholelithiasis by RT-PCR. A bicistronic retroviral vector G1Na-MGMT-IRES-MDR1 cDNA was constructed and transfected the packaging cell lines GP + E86 and PA317 by electric performation method, using the medium containing VCR and BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, cord blood CD34+ cells were enriched with a high-gradient magnetic cell sorting system (MACS), and then transfected repeatedly with supernatant of retrovirus containing human MGMT and MDR1cDNA under stimulation of hemapoietic growth factors. PCR, RT-PCR, Southern blot, Northern blot, Western blot, FACS and MTT assay were used to evaluate the transfer and expression of the double genes in cord blood CD34+ cells. The cDNA encoding MGMT was verified by DNA sequencing and the bicistronic retroviral vector was confirmed by restriction endonuclease analysis. The purity of cord blood CD34+ cells was approximately 92% and recover rate was 75%, the highest titer of recombinant amphotropic retrovirus in the supernatant was up to 5.8 x 10(5) cfu/ml. The efficiency of gene transduction was 18% and 20% tested by colony formation and PCR, respectively. No helper virus was found by both nested PCR and rescue assay. The results showed that dual drug resistance genes have been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The MTT analysis showed a 4.5 to 7.8-fold increase of resistance of transducted cells to BCNU and P-glycoprotein effluxed drug as compared with the nontransduced cells. This study provided a foundation for ameliorating combination chemotherapy toxicity in tumor clinical trial.  相似文献   

6.
The use of anti-cancer chemotherapy often leads to the rise of multidrug-resistant (MDR) tumors. We have previously reported the overexpression of a 40kDa protein (P-40) in several MDR tumor cell lines. In this report we describe the cloning of a 1.4kb cDNA with an open reading frame of 344 amino acids that encodes the P-40 protein. Analysis of the P-40 amino acid sequence showed it is identical to the human annexin I (Anx-I) protein. The identity of the isolated P-40 cDNA as Anx-I was confirmed by the specific binding of IPM96 mAb to a 40kDa protein following the in vitro expression of P-40 full-length cDNA. Northern blot analysis of total RNA from drug-sensitive and -resistant cells revealed an increase in P-40 (or Anx-I) mRNA in drug-resistant cells relative to drug-sensitive cells. Transfection of Anx-I cDNA into drug-sensitive MCF-7 cells was carried out without further drug selection and showed 2- to 5-fold increase in resistance of transfected cells to adriamycin, melphalan, and etoposide. Conversely, transfection of reverse Anx-I cDNA into SKOV-3 cells decreased the expression of Anx-I without affecting the expression of other members of the annexin family and showed a 3- to 8-fold increase in sensitivity to these drugs. Of interest was the correlation between the presence of Anx-I and MDR in MDA-MB-231 cells when compared to MCF-7 cells. MDA-MB-231 cells show 3- to 20-fold increase in resistance to adriamycin, melphalan, and etoposide in the absence of detectable levels of P-glycoprotein (P-gp1), the multidrug resistance protein (MRP1) or the breast cancer resistance protein (BCRP). Taken together, these results provide the first direct evidence for the role of Anx-I in MDR of tumor cells.  相似文献   

7.
8.
9.
10.
Human canalicular multispecific organic anion transporter (cMOAT), a glutathione conjugate membrane transporter, has been isolated from cisplatin-resistant cancer cells and is distributed mainly in normal liver. We analyzed the expression of human cMOAT in 14 lung, 11 gastric, and 9 colorectal non-drug-selected human cancer cells, two multidrug-resistant cells, and one cisplatin-resistant cells, using quantitative RT-PCR and newly developed anti-human cMOAT antibody. All cell lines analyzed here expressed human cMOAT at the level of mRNA and protein, and some of them expressed higher levels of human cMOAT than the cisplatin-resistant cells. The two multidrug-resistant cell lines co-expressed human cMOAT gene and both or either of MRP and MDR1 genes. Immunostaining showed that human cMOAT was predominantly localized to the cytoplasm of these single cells. Our results indicate that human cMOAT is expressed in various human cancer cells including drug-resistant cells.  相似文献   

11.
12.
13.
Abstract. Nuclear DNA content was assessed in multidrug-resistant (MDR) cells by image and flow cytometry. Two human MDR cell lines (K562-Dox and CEM-VLB) obtained by in vitro drug selection and overexpressing mdr1 gene were compared to their respective sensitive counterparts (K562 and CCRF-CEM) and to the MDR hamster LR73-R cell line obtained by transfection of mouse mdr1 cDNA. Both cell lines obtained by selection displayed a decreased DNA content, as measured by image cytometry after Feulgen staining, or by flow cytometry after staining with propidium iodide, ethidium bromide, or Hoechst 33342. This decrease was not accompanied by changes in cell cycle phase distribution of cells. Moreover, image cytometry of cells stained after various hydrolysis times in 5 M HCl indicated that MDR cells displayed the same hydrolysis kinetics and sensitivity as drug-sensitive cells with a well-preserved stoichiometry of the Feulgen reaction. LR73-R cells transfected with mdr1 cDNA exhibited only a very limited change in propidium iodide staining as compared with sensitive LR73 cells, suggesting that mdr1 gene overexpression alone could not account for the alterations in DNA content observed in the selected MDR cells.  相似文献   

14.
15.
16.
Resistance to therapeutic treatment is the major obstacle to advances in the successful management of pancreatic cancer. To characterize chromosomal alterations associated with different phenotypes of acquired multidrug resistance (MDR) and thermoresistance, comparative genomic hybridization (CGH) was applied to compare human pancreatic carcinoma-derived cells. This panel of cell lines consists of the parental, drug- and thermosensitive pancreatic carcinoma cell line EPP85 - 181P, its atypical MDR variant EPP85-181RNOV, the classical MDR subline EPP85-181RDB, and their thermoresistant counterparts EPP85-181P-TR, EPP85-181RNOV-TR, and EPP85 - 181RDB-TR, respectively. CGH using genomic DNA prepared from these cell lines as probes successfully identified genomic gains and/or losses in chromosomal regions encoding putative genes associated with drug resistance and/or thermoresistance. These genes included 23 members of the family of ABC transporters, 27 members of the family of cytochrome P450 (CYP) monooxygenases, various molecular chaperones, DNA repair enzymes, and factors involved in the regulation of cell cycle and apoptosis. The importance of these cell variant-specific genomic imbalances in the development of MDR and thermoresistance is discussed and remains to be elucidated.  相似文献   

17.
18.
19.
20.
We have cloned the human genomic DNA and the corresponding cDNA for the gene which complements the mutation of tsBN51, a temperature-sensitive (Ts) cell cycle mutant of BHK cells which is blocked in G1 at the nonpermissive temperature. After transfecting human DNA into TsBN51 cells and selecting for growth at 39.5 degrees C, Ts+ transformants were identified by their content of human AluI repetitive DNA sequences. Following two additional rounds of transfection, a genomic library was constructed from a tertiary Ts+ transformant and a recombinant phage containing the complementing gene isolated by screening for human AluI sequences. A genomic probe from this clone recognized a 2-kilobase mRNA in human and tertiary transformant cell lines, and this probe was used to isolate a biologically active cDNA from the Okayama-Berg cDNA expression library. Sequencing of this cDNA revealed a single open reading frame encoding a polypeptide of 395 amino acids. The deduced BN51 gene product has a high proportion of acidic and basic amino acids which are clustered in four hydrophilic domains spaced at 60- to 80-amino-acid intervals. These domains have strong sequence homology to each other. Thus, the tsBN51 protein consists of periodic repetitive clusters of acidic and basic amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号