首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerol dehydrogenase (GDH) is an important polyol dehydrogenase for glycerol metabolism in diverse microorganisms and for value-added utilization of glycerol in the industry. Two GDHs from Klebsiella pneumoniae, DhaD and GldA, were expressed in Escherichia coli, purified and characterized for substrate specificity and kinetic parameters. Both DhaD and GldA could catalyze the interconversion of (3R)-acetoin/(2R,3R)-2,3-butanediol or (3S)-acetoin/meso-2,3-butanediol, in addition to glycerol oxidation. Although purified GldA appeared more active than DhaD, in vivo inactivation and quantitation of their respective mRNAs indicate that dhaD is highly induced by glycerol and plays a dual role in glycerol metabolism and 2,3-butanediol formation. Complementation in K. pneumoniae further confirmed the dual role of DhaD. Promiscuity of DhaD may have vital physiological consequences for K. pneumoniae growing on glycerol, which include balancing the intracellular NADH/NAD+ ratio, preventing acidification, and storing carbon and energy. According to the kinetic response of DhaD to modified NADH concentrations, DhaD appears to show positive homotropic interaction with NADH, suggesting that the physiological role could be regulated by intracellular NADH levels. The co-existence of two functional GDH enzymes might be due to a gene duplication event. We propose that whereas DhaD is specialized for glycerol utilization, GldA plays a role in backup compensation and can turn into a more proficient catalyst to promote a survival advantage to the organism. Revelation of the dual role of DhaD could further the understanding of mechanisms responsible for enzyme evolution through promiscuity, and guide metabolic engineering methods of glycerol metabolism.  相似文献   

2.
The only species of fission yeasts capable of growing on glycerol or dihydroxyacetone were Schizosaccharomyces pombe and S. malidevorans. When growing on glycerol or grown on glucose until it was exhausted, these species contained glycerol:NAD+ 2-oxidoreductase and dihydroxyacetone kinase but no glycerol kinase, consistent with utilization of glycerol via dihydroxyacetone. When grown to exhaustion of glucose, S. octosporus, S. slooffiae and S. japonicus contained dihydroxyacetone kinase but no glycerol:NAD+ 2-oxidoreductase or glycerol kinase. Prior to exhaustion of glucose in the medium, all species contained dihydroxyacetone kinase, all species except S. japonicus contained glycerol:NADP+ 2-oxidoreductase, and only S. pombe and S. malidevorans contained glycerol:NAD+ 2-oxidoreductase. Possible roles for the glycerol:NAD+ 2-oxidoreductase, glycerol:NADP+ 2-oxidoreductase and dihydroxyacetone kinase in metabolism of glycerol and dihydroxyacetone are discussed.Non-standard abbreviations DHA dihydroxyacetone - DHAK dihydroxyacetone kinase - DHAP dihydroxyacetone phosphate - GK glycerol kinase - G2DH-NAD glycerol - NAD+ 2-oxidoreductase - G2DH-NADP glycerol - NADP+ 2-oxidoreductase - MEA malt extract agar - YEP yeast extract phosphate medium  相似文献   

3.
The knowledge of the mechanism of flux distribution will benefit understanding cell physiology and regulation of metabolism. In this study, the measured fluxes obtained under steady-state conditions were used to estimate intracellular fluxes and identify the robustness of branch points of the anaerobic glycerol metabolism in Klebsiella pneumoniae for the production of 1,3-propanediol by metabolic flux analysis. The biomass concentration increased as NADH2/NAD+ decreased at low initial concentration and inversed at high initial glycerol concentration. The flux distribution revealed that the branch points of glycerol and dihydroxyacetonephosphate were rigid to the environmental conditions. However, the pyruvate and acetyl coenzyme A metabolisms gave cells the flexibility to regulate the energy and intermediate fluxes under various environmental conditions. Additionly, it was found that the formation rate of ethanol and the ratio of pyruvate dehydrogenase to pyruvate formate lyase appeared visible fluctuations at high glycerol uptake rate.  相似文献   

4.
Methionine metabolism is disrupted in patients with alcoholic liver disease, resulting in altered hepatic concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and other metabolites. The present study tested the hypothesis that reductive stress mediates the effects of ethanol on liver methionine metabolism. Isolated rat livers were perfused with ethanol or propanol to induce a reductive stress by increasing the NADH/NAD+ ratio, and the concentrations of SAM and SAH in the liver tissue were determined by high-performance liquid chromatography. The increase in the NADH/NAD+ ratio induced by ethanol or propanol was associated with a marked decrease in SAM and an increase in SAH liver content. 4-Methylpyrazole, an inhibitor the NAD+-dependent enzyme alcohol dehydrogenase, blocked the increase in the NADH/NAD+ ratio and prevented the alterations in SAM and SAH. Similarly, co-infusion of pyruvate, which is metabolized by the NADH-dependent enzyme lactate dehydrogenase, restored the NADH/NAD+ ratio and normalized SAM and SAH levels. The data establish an initial link between the effects of ethanol on the NADH/NAD+ redox couple and the effects of ethanol on methionine metabolism in the liver.  相似文献   

5.
3-Hydroxypropionaldehyde (3-HPA), an important intermediary metabolite of 1,3-propanediol (PDO) production, would be toxic to the cell growth and led to the abnormal cessation of the fermentation process. In this study, the dhaD gene encoding glycerol dehydrogenase (GDH) and dhaT gene encoding 1,3-propanediol oxidoreductase (PDOR) were overexpressed in Klebsiella pneumoniae ACCC 10082 to decrease the 3-HPA accumulation and increase the coenzyme NADH supply. By the construction of pTD plasmid, GDH and PDOR were both overexpressed and their enzyme activities were increased by 2.6- and 3.2-fold, respectively. The enzyme activity ratio of PDOR/GDHt (glycerol dehydratase) also was increased. On the other hand, NADH production was enhanced and the ratio of NADH/NAD+ exceeded 1 after the inducement of IPTG for the constructed strain. The two factors enhanced the transformation of 3-HPA to PDO. In the batch and fed-batch fermentation by the constructed strain, the peak of 3-HPA accumulation reduced by 52.2% and 33.3%, respectively, compared with the control. The PDO concentration and yield reached 59.2 g/L and 0.48 mol/mol, respectively. Furthermore, the fed-batch fermentation process appeared easier to be regulated. This work is considered helpful for the further understanding on the PDO metabolic mechanism of K. pneumoniae and also useful for the PDO fermentation in a large-scale bioreactor.  相似文献   

6.
A string-like carbon fiber was found to be very suitable as a working electrode material for direct electrochemical oxidation of β-nicotinamide adenine dinucleotide reduced form (NADH), and direct use of it for an enzyme reactor was possible. The electrochemical NAD+ recycling system was applied to glucose dehydrogenase (GDH) and to the recombinant formate dehydrogenase (RFDH) reactors. The maximum oxidation current value increased to 3.9 mA in the case of the GDH reactor. The remaining GDH activity after the reaction for 10 h amounted to 57% of the initial level. The remaining NAD+ activity amounted to 78% of the initial level. The current efficiency was calculated to be 80%. Furthermore, RFDH, which was more stable than GDH, was applied to the system. The maximum current value reached 5.9 mA. The remaining RFDH activity after reaction for 10 h amounted to 81% of the initial level. The remaining NAD+ activity was 78% of the initial level. The current efficiency was calculated to be 73%. Based on these results, both the enzyme and NAD+ were found to be acceptably stable in the electrochemical NAD+ recycling system.  相似文献   

7.
An expression system for NAD+-dependent formate dehydrogenase gene (fdh1), from Candida boidinii, was constructed and cloned into Enterobacter aerogenes IAM1183. With the fdh1 expression, the total H2 yield was attributed to a decrease in activity of the lactate pathway and an increase of the formate pathway flux due to the NADH regeneration. Analysis of the redox state balance and ethanol-to-acetate ratio in the fdhl-expressed strain showed that increased reducing power arose from the reconstruction of NADH regeneration pathway from formate thereby contributing to the improved H2 production.  相似文献   

8.
Redox cofactors play crucial roles in the metabolic and regulatory network of living organisms. We reported here the effect of introducing a heterogeneous NADH regeneration system into Klebsiella oxytoca on cell growth and glycerol metabolism. Expression of fdh gene from Candida boidinii in K. oxytoca resulted in higher intracellular concentrations of both NADH and NAD+ during the fermentation metaphase, with the ratio of NADH to NAD+ unaltered and cell growth unaffected, interestingly different from that in engineered Escherichia coli, Lactococcus lactis, and others. Metabolic flux analysis revealed that fluxes to 1,3-propanediol, ethanol, and lactate were all increased, suggesting both the oxidative and reductive metabolisms of glycerol were enhanced. It demonstrates that in certain microbial system NADH availability can be increased with NADH to NAD+ ratio unaltered, providing a new strategy to improve the metabolic flux in those microorganisms where glycolysis is not the only central metabolic pathways.  相似文献   

9.
Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD+]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.  相似文献   

10.
A full length cDNA encoding glutamate dehydrogenase was cloned from Teladorsagia circumcincta (TcGDH). The TcGDH cDNA (1614 bp) encoded a 538 amino acid protein. The predicted amino acid sequence showed 96% and 93% similarity with Haemonchus contortus and Caenorhabditis elegans GDH, respectively. A soluble N-terminal 6xHis-tagged GDH protein was expressed in the recombinant Escherichia coli strain BL21 (DE3) pGroESL, purified and characterised. The recombinant TcGDH had similar kinetic properties to those of the enzyme in homogenates of T. circumcincta, including greater activity in the aminating than deaminating reaction. Addition of 1 mM ADP and ATP increased activity about 3-fold in the deaminating reaction, but had no effect in the reverse direction. TcGDH was a dual co-factor enzyme that operated both with NAD+ and NADP+, GDH activity was greater in the deaminating reaction with NADP+ as co-factor and more with NADH in the aminating reaction.  相似文献   

11.
Klebsiella aerogenes NCIB 418 assimilates glycerol via alternative pathways: one involves a glycerol kinase with a high affinity for glycerol (apparent K m=1–2×10–6 M), and the second a glycerol dehydrogenase with a much lower affinity for its substrate (apparent K m=2–4×10–2 M).In variously-limited chemostat cultures, one or the other pathway predominated. Thus, aerobic carbonlimited organisms contained only the glycerol kinase pathway whereas aerobic sulphate-limited or ammonia-limited organisms (grown on glycerol) used only the glycerol dehydrogenase pathway. Anaerobic cultures invariably contained glycerol dehydrogenase, and glycerol kinase was absent.Washed suspensions of aerobically-grown organisms oxidized glycerol with kinetics similar to that of the particular enzyme (the primary enzyme of the assimilatory pathway) which they possessed, thus indicating a close association between these two enzymes and the uptake process. But a supply of exogenous glycerol was not a prerequisite for the synthesis of either glycerol kinase or glycerol dehydrogenase, and nor was molecular oxygen the key factor in effecting modulation between the alternative pathways of glycerol metabolism, as had been previously suggested.The physiological significance of dual pathways of glycerol assimilation is discussed.  相似文献   

12.
Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+/NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+-dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+-dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+, that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+-sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.  相似文献   

13.
Sterile cultures of Lemna minor grown in the presence of either nitrate, ammonium or amino acids failed to show significant changes in glutamate dehydrogenase (GDH) levels in response to nitrogen source. Crude and partially purified GDH preparations exhibit NADH and NADPH dependent activities. The ratio of these activities remain ca 12:1 during various treatments. Mixed substrate and product inhibition studies as well as electrophoretic behaviour suggest the existence of a single enzyme which is active in the presence of both coenzymes. GDH activity was found to be localized mainly in mitochondria. Kinetic studies revealed normal Michaelis kinetics with most substrates but showed deviations with NADPH and glutamate. A Hill-coefficient of 1.9 determined with NADPH indicates positive cooperative interactions, whereas a Hill-coefficient of 0.75 found with glutamate may be interpreted in terms of negative cooperative interactions. NADH dependent activity decreases rapidly during gel filtration whereas the NAD+ and NADPH activities remain unchanged. GDH preparations which have been pretreated with EDTA show almost complete loss of NADH and NAD+ activities. NADPH activity again remains unaffected. NAD+ activity is fully restored by adding Ca2+ or Mg2+, whereas the NADH activity can only be recovered by Ca2+ but not at all by Mg2+. Moderate inhibition of GDH reactions observed with various adenylates are fully reversed by adding Ca2+, indicating that the adenylate inhibition is due solely to the chelating properties of these compounds.  相似文献   

14.
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2–3% of the sugar fermented is converted to glycerol. Replacing the NAD+-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD+ by transforming a double mutant (gpd1gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD+ regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.  相似文献   

15.
Enzymes, important to protein synthesis, were investigated in young and old leaves of Urtica dioica. The plants, divided into two groups, were exposed to either 18-hour or 12-hour photo-periods. One group of plants from each photoperiodic regime was subjected to an irradiance of 28 W × m-2, and the other group of plants to 42 W × m-2. The enzymes investigated were glutamate dehydrogenase (GDH), aspartate aminotransferase (glutamate-oxaloacetate transaminase, GOT), and alanine aminotransferase (glutamate-pyruvate transaminase, GPT), GDH and GOT were determined by means of electrophoretic separation on polyacrylamide and spectrophotometric measurements. GPT was determined only by the latter method. Plants exposed to 18-hour photoperiods showed much higher GDH activity than did those exposed to 12-hour photoperiods. The activity of GDH also increased with leaf age. Besides one uniform NAD+-dependent GDH, two other NAD+-independent enzymes, showing GDH activity, were identified on polyacryl-amide gel electrophoresis. The distribution of NADH and NAD+-dependent GDH activity between young and old leaves was similar under different growth conditions. The activity of GOT was insensitive to environmental changes. The results regarding GPT indicate that this enzyme responded to different photoperiods in the same way as GDH. A correlation coefficient of 0.928 was obtained for the relationship between GDH and GPT activity.  相似文献   

16.
Saccharomyces cerevisiae maintains a redox balance under fermentative growth conditions by re-oxidizing NADH formed during glycolysis through ethanol formation. Excess NADH stimulates the synthesis of mainly glycerol, but also of other compounds. Here, we investigated the production of primary and secondary metabolites in S. cerevisiae strains where the glycerol production pathway was inactivated through deletion of the two glycerol-3-phosphate dehydrogenases genes (GPD1/GPD2) and replaced with alternative NAD+-generating pathways. While these modifications decreased fermentative ability compared to the wild-type strain, all improved growth and/or fermentative ability of the gpd1Δgpd2Δ strain in self-generated anaerobic high sugar medium. The partial NAD+ regeneration ability of the mutants resulted in significant amounts of alternative products, but at lower yields than glycerol. Compared to the wild-type strain, pyruvate production increased in most genetically manipulated strains, whereas acetate and succinate production decreased in all strains. Malate production was similar in all strains. Isobutanol production increased substantially in all genetically manipulated strains compared to the wild-type strain, whereas only mutant strains expressing the sorbitol producing SOR1 and srlD genes showed increases in isoamyl alcohol and 2-phenyl alcohol. A marked reduction in ethyl acetate concentration was observed in the genetically manipulated strains, while isobutyric acid increased. The synthesis of some primary and secondary metabolites appears more readily influenced by the NAD+/NADH availability. The data provide an initial assessment of the impact of redox balance on the production of primary and secondary metabolites which play an essential role in the flavour and aroma character of beverages.  相似文献   

17.
Lin R  Liu H  Hao J  Cheng K  Liu D 《Biotechnology letters》2005,27(22):1755-1759
Addition of 5 mm fumarate to cultures of Klebsiella pneumoniae enhanced the rate of glycerol consumption and the production of 1,3-propanediol (PDO). Compared to the control, the activity of glycerol dehydrogenase increased by 35, 33 and 46%, the activity of glycerol dehydratase increased by 160, 210 and 115%, and the activity of 1,3-propanediol oxidoreductase increased by 25, 39 and 85% when, respectively, 5, 15 and 25 mm fumarate were provided. At the same time, the ratio of NAD+ to NADH decreased by 20, 23 and 29%. Using a 5 l bioreactor with 5 mM fumarate addition, the specific rate of glycerol consumption and the productivity of PDO was 30 mmol/l h and 17 mmol/l h, respectively, both increased by 35% over the control. Revisions requested 15 July 2005; Revisions received 30 August 2005  相似文献   

18.
Malate: A Possible Source of Error in the NAD Glutamate Dehydrogenase Assay   总被引:2,自引:0,他引:2  
The effects of externally induced metabolic perturbations areoften studied through changes of the enzyme activity patternsin crude plant extracts. From glutamate dehydrogenase (GDH)it is reported that environmental changes not only influencethe amount of the enzymatic activity, but also the ratio ofthe aminating to the deaminating activities (NADH/NAD+ ratio).Using crude cell extracts of suspension cultures of wheat (Triticumaestivum L. cv. Heines Koga II) we find evidence that the pretreatmentof the homogenate directly influences this ratio. Dialysis ofthese crude cell extracts resulted in a 70% loss of the NAD+activity, while the NADH activity remained unchanged. The deaminatingactivity in the dialysed extract could be completely restoredupon addition of a dialysable factor which was identified tobe malate. The interference of malate with the glutamate dehydrogenasereaction is caused through the action of malate dehydrogenaseand glutamate oxaloacetate transaminase which are both presentin high activities in the extracts. Only in exhaustively dialysedcell extracts can the proper deaminating GDH activity be determined.The results are discussed in the light of the controversialreports on the variable ratio of the NADH/NAD+ activity of GDH. Key words: Glutamate dehydrogenase, malate, NADH/NAD+, activity, Triticum aestivum  相似文献   

19.
Glutamate dehydrogenase, GDH (l-glutamate: NAD+ oxidoreductase (deaminating) EC 1.4.1.2) was purified from the plant fraction of lupin nodules and the purity of the preparation established by gel electrophoresis and electrofocusing. The purified enzyme existed as 4 charge isozymes with a MW of 270000. The subunit MW, as determined by dodecyl sulphate electrophoresis, was 45 000. On the basis of the results of the MW determinations a hexameric structure is proposed for lupin-nodule GDH. The pH optima for the enzyme were pH 8.2 for the amination reaction and pH 8.8 for the deamination reaction. GDH from lupin nodules showed a marked preference for NADH over NADPH in the amination reaction and used only NAD+ for the deamination reaction. Pyridoxal-5′-P and EDTA inhibited activity. The enzyme displayed Michaelis-Menten kinetics with respect to all substrates except NAD+. When NAD+ was the varied substrate, there was a deviation from Michaelis-Menten behaviour towards higher activity at high concentrations of NAD+.  相似文献   

20.
Two types of glycerol dehydrogenase (GDH) were found on DEAE-cellulose column chromatography of cell-free extracts of methylotrophic yeasts. One type, designated as GDH I, showed only the reductive activity which was detected in the reaction system containing dihydroxyacetone and NADH, at pH 6.0. The other type, designated as GDH II, showed the oxidative activity which was detected in the system containing glycerol and NAD +, at pH 9.0, together with the reductive activity.

Candida boidinii No. 2201, which possesses the phosphorylative pathway for glycerol dissimilation, had only GDH I when grown on glycerol or methanol as the carbon source. Hansenula ofunaensis, which has the oxidative pathway, had both GDH I and GDH II when grown on glycerol, but only GDH I when grown on methanol. Hansenula polymorpha Dl-1, which has both pathways, had both GDH I and GDH II when grown on glycerol or methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号