首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence comparison is a major step in the prediction of protein structure from existing templates in the Protein Data Bank. The identification of potentially remote homologues to be used as templates for modeling target sequences of unknown structure and their accurate alignment remain challenges, despite many years of study. The most recent advances have been in combining as many sources of information as possible--including amino acid variation in the form of profiles or hidden Markov models for both the target and template families, known and predicted secondary structures of the template and target, respectively, the combination of structure alignment for distant homologues and sequence alignment for close homologues to build better profiles, and the anchoring of certain regions of the alignment based on existing biological data. Newer technologies have been applied to the problem, including the use of support vector machines to tackle the fold classification problem for a target sequence and the alignment of hidden Markov models. Finally, using the consensus of many fold recognition methods, whether based on profile-profile alignments, threading or other approaches, continues to be one of the most successful strategies for both recognition and alignment of remote homologues. Although there is still room for improvement in identification and alignment methods, additional progress may come from model building and refinement methods that can compensate for large structural changes between remotely related targets and templates, as well as for regions of misalignment.  相似文献   

2.
Most phylogenetic models of protein evolution assume that sites are independent and identically distributed. Interactions between sites are ignored, and the likelihood can be conveniently calculated as the product of the individual site likelihoods. The calculation considers all possible transition paths (also called substitution histories or mappings) that are consistent with the observed states at the terminals, and the probability density of any particular reconstruction depends on the substitution model. The likelihood is the integral of the probability density of each substitution history taken over all possible histories that are consistent with the observed data. We investigated the extent to which transition paths that are incompatible with a protein's three-dimensional structure contribute to the likelihood. Several empirical amino acid models were tested for sequence pairs of different degrees of divergence. When simulating substitutional histories starting from a real sequence, the structural integrity of the simulated sequences quickly disintegrated. This result indicates that simple models are clearly unable to capture the constraints on sequence evolution. However, when we sampled transition paths between real sequences from the posterior probability distribution according to these same models, we found that the sampled histories were largely consistent with the tertiary structure. This suggests that simple empirical substitution models may be adequate for interpolating changes between observed sequences during phylogenetic inference despite the fact that the models cannot predict the effects of structural constraints from first principles. This study is significant because it provides a quantitative assessment of the biological realism of substitution models from the perspective of protein structure, and it provides insight on the prospects for improving models of protein sequence evolution.  相似文献   

3.
Protein structure prediction by comparative modeling benefits greatly from the use of multiple sequence alignment information to improve the accuracy of structural template identification and the alignment of target sequences to structural templates. Unfortunately, this benefit is limited to those protein sequences for which at least several natural sequence homologues exist. We show here that the use of large diverse alignments of computationally designed protein sequences confers many of the same benefits as natural sequences in identifying structural templates for comparative modeling targets. A large-scale massively parallelized application of an all-atom protein design algorithm, including a simple model of peptide backbone flexibility, has allowed us to generate 500 diverse, non-native, high-quality sequences for each of 264 protein structures in our test set. PSI-BLAST searches using the sequence profiles generated from the designed sequences ("reverse" BLAST searches) give near-perfect accuracy in identifying true structural homologues of the parent structure, with 54% coverage. In 41 of 49 genomes scanned using reverse BLAST searches, at least one novel structural template (not found by the standard method of PSI-BLAST against PDB) is identified. Further improvements in coverage, through optimizing the scoring function used to design sequences and continued application to new protein structures beyond the test set, will allow this method to mature into a useful strategy for identifying distantly related structural templates.  相似文献   

4.
Exploring the structure and function paradigm   总被引:3,自引:3,他引:0  
Advances in protein structure determination, led by the structural genomics initiatives have increased the proportion of novel folds deposited in the Protein Data Bank. However, these structures are often not accompanied by functional annotations with experimental confirmation. In this review, we reassess the meaning of structural novelty and examine its relevance to the complexity of the structure-function paradigm. Recent advances in the prediction of protein function from structure are discussed, as well as new sequence-based methods for partitioning large, diverse superfamilies into biologically meaningful clusters. Obtaining structural data for these functionally coherent groups of proteins will allow us to better understand the relationship between structure and function.  相似文献   

5.
Homology modelling of the human eIF-5A protein has been performed by using a multiple predictions strategy. As the sequence identity between the target and the template proteins is nearly 30%, which is lower than the commonly used threshold to apply with confidence the homology modelling method, we developed a specific predictive scheme by combining different sequence analyses and predictions, as well as model validation by comparison to structural experimental information. The target sequence has been used to find homologues within sequence databases and a multiple alignment has been created. Secondary structure for each single protein has been predicted and compared on the basis of the multiple sequence alignment, in order to evaluate and adjust carefully any gap. Therefore, comparative modelling has been applied to create the model of the protein on the basis of the optimized sequence alignment. The quality of the model has been checked by computational methods and the structural features have been compared to experimental information, giving us a good validation of the reliability of the model and its correspondence to the protein structure in solution. Last, the model was deposited in the Protein Data Bank to be accessible for studies on the structure-function relationships of the human eIF-5A.  相似文献   

6.
The prediction of 1D structural properties of proteins is an important step toward the prediction of protein structure and function, not only in the ab initio case but also when homology information to known structures is available. Despite this the vast majority of 1D predictors do not incorporate homology information into the prediction process. We develop a novel structural alignment method, SAMD, which we use to build alignments of putative remote homologues that we compress into templates of structural frequency profiles. We use these templates as additional input to ensembles of recursive neural networks, which we specialise for the prediction of query sequences that show only remote homology to any Protein Data Bank structure. We predict four 1D structural properties – secondary structure, relative solvent accessibility, backbone structural motifs, and contact density. Secondary structure prediction accuracy, tested by five‐fold cross‐validation on a large set of proteins allowing less than 25% sequence identity between training and test set and query sequences and templates, exceeds 82%, outperforming its ab initio counterpart, other state‐of‐the‐art secondary structure predictors (Jpred 3 and PSIPRED) and two other systems based on PSI‐BLAST and COMPASS templates. We show that structural information from homologues improves prediction accuracy well beyond the Twilight Zone of sequence similarity, even below 5% sequence identity, for all four structural properties. Significant improvement over the extraction of structural information directly from PDB templates suggests that the combination of sequence and template information is more informative than templates alone. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.  相似文献   

8.
Evolutionary models of molecular structures must incorporate molecular information at different levels of structural complexity and must be phrased within a phylogenetic perspective. In this regard, phylogenetic trees of substructures that are reconstructed from molecular features that contribute to order and thermodynamic stability show that a gradual model of evolution of 5S rRNA structure is more parsimonious than models that invoke large segmental duplications of the molecule. The search for trees of substructures that are most parsimonious, by their very nature, defines an objective strategy to select models of molecular change that best fit structural data. When combined with additional data, such as the age of protein domains that interact with RNA substructures, these trees can be used to falsify unlikely hypotheses.  相似文献   

9.
The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. We used two sources to obtain datasets of decoys to compare with real protein structures: submissions to the biennial Critical Assessment of protein Structure Prediction competition, in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence, and also decoys generated by 3DRobot, which have user‐specified global root‐mean‐squared deviations from experimentally determined structures. Our analysis revealed that both sets of decoys possess cores that do not recapitulate the key features that define real protein cores. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a feed‐forward neural network, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoy structures with similar accuracy to that obtained by state‐of‐the‐art methods that incorporate many additional features. The small number of physical features makes our model interpretable, emphasizing the importance of protein packing and hydrophobicity in protein structure prediction.  相似文献   

10.
The dramatic increase in heterogeneous types of biological data—in particular, the abundance of new protein sequences—requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity—GPCRs and kinases from humans, and the crotonase superfamily of enzymes—we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships.  相似文献   

11.
12.
Reva B  Finkelstein A  Topiol S 《Proteins》2002,47(2):180-193
We present a new method for more accurate modeling of protein structure, called threading with chemostructural restrictions. This method addresses those cases in which a target sequence has only remote homologues of known structure for which sequence comparison methods cannot provide accurate alignments. Although remote homologues cannot provide an accurate model for the whole chain, they can be used in constructing practically useful models for the most conserved-and often the most interesting-part of the structure. For many proteins of interest, one can suggest certain chemostructural patterns for the native structure based on the available information on the structural superfamily of the protein, the type of activity, the sequence location of the functionally significant residues, and other factors. We use such patterns to restrict (1) a number of possible templates, and (2) a number of allowed chain conformations on a template. The latter restrictions are imposed in the form of additional template potentials (including terms acting as sequence anchors) that act on certain residues. This approach is tested on remote homologues of alpha/beta-hydrolases that have significant structural similarity in the positions of their catalytic triads. The study shows that, in spite of significant deviations between the model and the native structures, the surroundings of the catalytic triad (positions of C(alpha) atoms of 20-30 nearby residues) can be reproduced with accuracy of 2-3 A. We then apply the approach to predict the structure of dipeptidylpeptidase IV (DPP-IV). Using experimentally available data identifying the catalytic triad residues of DPP-IV (David et al., J Biol Chem 1993;268:17247-17252); we predict a model structure of the catalytic domain of DPP-IV based on the 3D fold of prolyl oligopeptidase (Fulop et al., Cell 1998;94:161-170) and use this structure for modeling the interaction of DPP-IV with inhibitor.  相似文献   

13.
The HSSP database of protein structure-sequence alignments.   总被引:4,自引:0,他引:4       下载免费PDF全文
HSSP is a derived database merging structural (3-D) and sequence (1-D) information. For each protein of known 3-D structure from the Protein Data Bank (PDB), the database has a multiple sequence alignment of all available homologues and a sequence profile characteristic of the family. The list of homologues is the result of a database search in SwissProt using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed homologues are very likely to have the same 3-D structure as the PDB protein to which they have been aligned. As a result, the database is not only a database of aligned sequence families, but also a database of implied secondary and tertiary structures covering 29% of all SwissProt-stored sequences.  相似文献   

14.

Background  

Structure-based computational methods are needed to help identify and characterize protein-protein complexes and their function. For individual proteins, the most successful technique is homology modelling. We investigate a simple extension of this technique to protein-protein complexes. We consider a large set of complexes of known structures, involving pairs of single-domain proteins. The complexes are compared with each other to establish their sequence and structural similarities and the relation between the two. Compared to earlier studies, a simpler dataset, a simpler structural alignment procedure, and an additional energy criterion are used. Next, we compare the Xray structures to models obtained by threading the native sequence onto other, homologous complexes. An elementary requirement for a successful energy function is to rank the native structure above any threaded structure. We use the DFIRE β energy function, whose quality and complexity are typical of the models used today. Finally, we compare near-native models to distinctly non-native models.  相似文献   

15.
The HSSP database of protein structure-sequence alignments.   总被引:2,自引:0,他引:2       下载免费PDF全文
HSSP is a derived database merging structural three dimensional (3-D) and sequence one dimensional(1-D) information. For each protein of known 3-D structure from the Protein Data Bank (PDB), the database has a multiple sequence alignment of all available homologues and a sequence profile characteristic of the family. The list of homologues is the result of a database search in Swissprot using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed homologues are very likely to have the same 3-D structure as the PDB protein to which they have been aligned. As a result, the database is not only a database of aligned sequence families, but also a database of implied secondary and tertiary structures covering 27% of all Swissprot-stored sequences.  相似文献   

16.
The HSSP database of protein structure-sequence alignments.   总被引:3,自引:0,他引:3       下载免费PDF全文
HSSP (homology-derived structures of proteins) is a derived database merging structural (2-D and 3-D) and sequence information (1-D). For each protein of known 3D structure from the Protein Data Bank, the database has a file with all sequence homologues, properly aligned to the PDB protein. Homologues are very likely to have the same 3D structure as the PDB protein to which they have been aligned. As a result, the database is not only a database of sequence aligned sequence families, but it is also a database of implied secondary and tertiary structures.  相似文献   

17.
Catalytic site structure is normally highly conserved between distantly related enzymes. As a consequence, templates representing catalytic sites have the potential to succeed at function prediction in cases where methods based on sequence or overall structure fail. There are many methods for searching protein structures for matches to structural templates, but few validated template libraries to use with these methods. We present a library of structural templates representing catalytic sites, based on information from the scientific literature. Furthermore, we analyse homologous template families to discover the diversity within families and the utility of templates for active site recognition. Templates representing the catalytic sites of homologous proteins mostly differ by less than 1A root mean square deviation, even when the sequence similarity between the two proteins is low. Within these sets of homologues there is usually no discernible relationship between catalytic site structure similarity and sequence similarity. Because of this structural conservation of catalytic sites, the templates can discriminate between matches to related proteins and random matches with over 85% sensitivity and predictive accuracy. Templates based on protein backbone positions are more discriminating than those based on side-chain atoms. These analyses show encouraging prospects for prediction of functional sites in structural genomics structures of unknown function, and will be of use in analyses of convergent evolution and exploring relationships between active site geometry and chemistry. The template library can be queried via a web server at and is available for download.  相似文献   

18.
Certain genetic variations in the human population are associated with heritable diseases, and single nucleotide polymorphisms (SNPs) represent the most common form of such differences in DNA sequence. In particular, substantial interest exists in determining whether a non-synonymous SNP (nsSNP), leading to a single residue replacement in the translated protein product, is neutral or disease-related. The nature of protein structure-function relationships suggests that nsSNP effects, either benign or leading to aberrant protein function possibly associated with disease, are dependent on relative structural changes introduced upon mutation. In this study, we characterize a representative sampling of 1790 documented neutral and disease-related human nsSNPs mapped to 243 diverse human protein structures, by quantifying environmental perturbations in the associated proteins with the use of a computational mutagenesis methodology that relies on a four-body, knowledge-based, statistical contact potential. These structural change data are used as attributes to generate a vector representation for each nsSNP, in combination with additional features reflecting sequence and structure of the corresponding protein. A trained model based on the random forest supervised classification algorithm achieves 76% cross-validation accuracy. Our classifier performs at least as well as other methods that use significantly larger datasets of nsSNPs for model training, and the novelty of our attributes differentiates the model as an orthogonal approach that can be utilized in conjunction with other techniques. A dedicated server for obtaining predictions, as well as supporting datasets and documentation, is available at http://proteins.gmu.edu/automute.  相似文献   

19.
MOTIVATION: Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homology modelling from a computer with web connection without the need of downloading and installing large program packages and databases. RESULTS: SWISS-MODEL workspace is a web-based integrated service dedicated to protein structure homology modelling. It assists and guides the user in building protein homology models at different levels of complexity. A personal working environment is provided for each user where several modelling projects can be carried out in parallel. Protein sequence and structure databases necessary for modelling are accessible from the workspace and are updated in regular intervals. Tools for template selection, model building and structure quality evaluation can be invoked from within the workspace. Workflow and usage of the workspace are illustrated by modelling human Cyclin A1 and human Transmembrane Protease 3. AVAILABILITY: The SWISS-MODEL workspace can be accessed freely at http://swissmodel.expasy.org/workspace/  相似文献   

20.
DeWeese-Scott C  Moult J 《Proteins》2004,55(4):942-961
Experimental protein structures often provide extensive insight into the mode and specificity of small molecule binding, and this information is useful for understanding protein function and for the design of drugs. We have performed an analysis of the reliability with which ligand-binding information can be deduced from computer model structures, as opposed to experimentally derived ones. Models produced as part of the CASP experiments are used. The accuracy of contacts between protein model atoms and experimentally determined ligand atom positions is the main criterion. Only comparative models are included (i.e., models based on a sequence relationship between the protein of interest and a known structure). We find that, as expected, contact errors increase with decreasing sequence identity used as a basis for modeling. Analysis of the causes of errors shows that sequence alignment errors between model and experimental template have the most deleterious effect. In general, good, but not perfect, insight into ligand binding can be obtained from models based on a sequence relationship, providing there are no alignment errors in the model. The results support a structural genomics strategy based on experimental sampling of structure space so that all protein domains can be modeled on the basis of 30% or higher sequence identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号