首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded antiparallel beta-sheet (beta1-beta6) with a protruding beta-strand (beta7) at the C-terminal region. The strand beta7 forms an antiparallel beta-sheet by interacting with strand beta4 in a symmetry-related molecule, suggesting that strands beta4 and beta7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the beta-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal alpha-helices (alpha1-alpha4) and beta-strand beta6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands beta2 and beta3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P.  相似文献   

2.
A systematic survey of seven parallel alpha/beta barrel protein domains, based on exhaustive structural comparisons, reveals that a sizable proportion of the alpha beta loops in these proteins--20 out of a total of 49--belong to either one of two loop types previously described by Thornton and co-workers. Six loops are of the alpha beta 1 type, with one residue between the alpha-helix and beta-strand, and 13 are of the alpha beta 3 type, with three residues between the helix and the strand. Protein fragments embedding the identified loops, and termed alpha beta connections since they contain parts of the flanking helix and strand, have been analyzed in detail revealing that each type of connection has a distinct set of conserved structural features. The orientation of the beta-strand relative to the helix and loop portions is different owing to a very localized difference in backbone conformation. In alpha beta 1 connections, the chain enters the beta-strand via a residue adopting an extended conformation, while in alpha beta 3 it does so via a residue in a near alpha-helical conformation. Other conserved structural features include distinct patterns of side chain orientation relative to the beta-sheet surface and of main chain H-bonds in the loop and the beta-strand moieties. Significant differences also occur in packing interactions of conserved hydrophobic residues situated in the last turn of the helix. Yet the alpha-helix surface of both types of connections adopts similar orientations relative to the barrel sheet surface. Our results suggest furthermore that conserved hydrophobic residues along the sequence of the connections, may be correlated more with specific patterns of interactions made with neighboring helices and sheet strands than with helix/strand packing within the connection itself. A number of intriguing observations are also made on the distribution of the identified alpha beta 1 and alpha beta 3 loops within the alpha/beta-barrel motifs. They often occur adjacent to each other; alpha beta 3 loops invariably involve even numbered beta-strands, while alpha beta 1 loops involve preferentially odd beta-strands; all the analyzed proteins contain at least one alpha beta 3 loop in the first half of the eightfold alpha/beta barrel. Possible origins of all these observations, and their relevance to the stability and folding of parallel alpha/beta barrel motifs are discussed.  相似文献   

3.
The amino acid sequence of the P2 protein of peripheral myelin was analyzed with regard to regions of probable alpha-helix, beta-structure, beta-turn, and unordered conformation by means of several algorithms commonly used to predict secondary structure in proteins. Because of the high beta-sheet content and virtual absence of alpha-helix shown by the circular dichroic spectra of the protein, a bias was introduced into the algorithms to favor the beta-structure over the alpha-helical conformation. In order to define those beta-sheet residues that could lie on the external hydrophilic surface of the protein and those that could lie in its hydrophobic interior, the predicted beta-strands were examined for charged and uncharged amino acids located at alternating positions in the sequence. The sequential beta-strands in the predicted secondary structure were then ordered into beta-sheets and aligned according to generally accepted tertiary folding principles and certain chemical properties peculiar to the P2 protein. The general model of the P2 protein that emerged was a "Greek key" beta-barrel, consisting of eight antiparallel beta-strands with a two-stranded ribbon of antiparallel beta-structure emerging from one end. The model has an uncharged, hydrophobic core and a highly hydrophilic surface. The two Cys residues, which form a disulfide, occur in a loop connecting two adjacent antiparallel strands. Two hydrophilic loops, each containing a cluster of acidic residues and a single Phe, protrude from one end of the molecule. The general model is consistent with many of the properties of the actual protein, including the relatively weak nature of its association with myelin lipids and the positions of amino acid substitutions. Alternative beta-strand orderings yield three specific models having different interstrand connections across the barrel ends.  相似文献   

4.
O'Neil KT  Bach AC  DeGrado WF 《Proteins》2000,41(3):323-333
We describe the NMR structure of a deletion mutant of the B1 IgG-binding domain from Group G Streptococcus. The deletion occurs within the last beta-strand of the protein, where it may potentially have a deleterious effect on the stability of the protein if the protein were not able to conformationally adjust to the perturbation. In particular, the deletion changes the registry of the final three residues in the sheet, forcing a polar Thr to be buried in the interior of the protein and exposing a hydrophobic Val to solvent. The deletion could also potentially create a large cavity in the beta-sheet and force the alpha- and gamma-carboxylates of the C-terminal Glu residue into a partially buried region of the sheet. The structure of the mutant illustrates how the conformation of the protein adjusts to the deletion, thereby mitigating some of the potentially deleterious consequences. Although the elements of secondary structure are retained between the mutant and the wt domain, there are multiple small adjustments in the segments connecting secondary structure elements. In particular, a hydrogen bond between the Glu57 carboxylates and two main chain amides is introduced that alters the conformation in the loop connecting the helix to strand 3. In addition, to minimize hydrophobic surface exposure, the turn connecting strands 1 and 2 folds toward the core so that the molecular volume is decreased.  相似文献   

5.
6.
Lipoic acid is an essential prosthetic group in several metabolic pathways. The biosynthetic pathway of protein lipoylation in Escherichia coli involves gene products of the lip operon. YbeD is a conserved bacterial protein located in the dacA-lipB intergenic region. Here, we report the nuclear magnetic resonance structure of YbeD from E. coli. The structure includes a beta alpha beta beta alpha beta fold with two alpha-helices on one side of a four-strand antiparallel beta-sheet. The beta 2-beta 3 loop shows the highest sequence conservation and is likely functionally important. The beta-sheet surface contains a patch of conserved hydrophobic residues, suggesting a role in protein-protein interactions. YbeD shows striking structural homology to the regulatory domain from d-3-phosphoglycerate dehydrogenase, hinting at a role in the allosteric regulation of lipoic acid biosynthesis or the glycine cleavage system.  相似文献   

7.
Human CA125, encoded by the MUC16 gene, is an ovarian cancer antigen widely used for a serum assay. Its extracellular region consists of tandem repeats of SEA domains. In this study we determined the three-dimensional structure of the SEA domain from the murine MUC16 homologue using multidimensional NMR spectroscopy. The domain forms a unique alpha/beta sandwich fold composed of two alpha helices and four antiparallel beta strands and has a characteristic turn named the TY-turn between alpha1 and alpha2. The internal mobility of the main chain is low throughout the domain. The residues that form the hydrophobic core and the TY-turn are fully conserved in all SEA domain sequences, indicating that the fold is common in the family. Interestingly, no other residues are conserved throughout the family. Thus, the sequence alignment of the SEA domain family was refined on the basis of the three-dimensional structure, which allowed us to classify the SEA domains into several subfamilies. The residues on the surface differ between these subfamilies, suggesting that each subfamily has a different function. In the MUC16 SEA domains, the conserved surface residues, Asn-10, Thr-12, Arg-63, Asp-75, Asp-112, Ser-115, and Phe-117, are clustered on the beta sheet surface, which may be functionally important. The putative epitope (residues 58-77) for anti-MUC16 antibodies is located around the beta2 and beta3 strands. On the other hand the tissue tumor marker MUC1 has a SEA domain belonging to another subfamily, and its GSVVV motif for proteolytic cleavage is located in the short loop connecting beta2 and beta3.  相似文献   

8.
We have systematically mutated residues located in turns between beta-strands of the intestinal fatty acid binding protein (IFABP), and a glycine in a half turn, to valine and have examined the stability, refolding rate constants and ligand dissociation constants for each mutant protein. IFABP is an almost all beta-sheet protein exhibiting a topology comprised of two five-stranded sheets surrounding a large cavity into which the fatty acid ligand binds. A glycine residue is located in seven of the eight turns between the antiparallel beta-strands and another in a half turn of a strand connecting the front and back sheets. Mutations in any of the three turns connecting the last four C-terminal strands slow the folding and decrease stability with the mutation between the last two strands slowing folding dramatically. These data suggest that interactions between the last four C-terminal strands are highly cooperative, perhaps triggered by an initial hydrophobic collapse. We suggest that this trigger is collapse of the highly hydrophobic cluster of amino acids in the D and E strands, a region previously shown to also affect the last stage of the folding process (Kim et al., 1997). Changing the glycine in the strand between the front and back sheets also results in a unstable, slow folding protein perhaps disrupting the D-E strand interactions. For most of the other turn mutations there was no apparent correlation between stability and refolding rate constants. In some turns, the interaction between strands, rather than the turn type, appears to be critical for folding while in others, turn formation itself appears to be a rate limiting step. Although there is no simple correlation between turn formation and folding kinetics, we propose that turn scanning by mutagenesis will be a useful tool for issues related to protein folding.  相似文献   

9.
Two-dimensional 1H-NMR studies have been performed on ribonuclease F1 (RNase F1), which contains 106 amino acid residues. Sequence-specific resonance assignments were accomplished for the backbone protons of 99 amino acid residues and for most of their side-chain protons. The three-dimensional structures were constructed on the basis of 820 interproton-distance restraints derived from NOE, 64 distance restraints for 32 hydrogen bonds and 33 phi torsion-angle restraints. A total of 40 structures were obtained by distance geometry and simulated-annealing calculations. The average root-mean-square deviation (residues 1-106) between the 40 converged structures and the mean structure obtained by averaging their coordinates was 0.116 +/- 0.018 nm for the backbone atoms and 0.182 +/- 0.015 nm for all atoms including the hydrogen atoms. RNase F1 was determined to be an alpha/beta-type protein. A well-defined structure constitutes the core region, which consists of a small N-terminal beta-sheet (beta 1, beta 2) and a central five-stranded beta-sheet (beta 3-beta 7) packed on a long helix. The structure of RNase F1 has been compared with that of RNase T1, which was determined by X-ray crystallography. Both belong to the same family of microbial ribonucleases. The polypeptide backbone fold of RNase F1 is basically identical to that of RNase T1. The conformation-dependent chemical shifts of the C alpha protons are well conserved between RNase F1 and RNase T1. The residues implicated in catalysis are all located on the central beta-sheet in a geometry similar to that of RNase T1.  相似文献   

10.
The folding pattern of the alpha-crystallin domain, a conserved protein module encoding the molecular determinants of structure and function in the small heat-shock protein superfamily, was determined in the context of the lens protein alphaA-crystallin by systematic application of site-directed spin labeling. The sequence-specific secondary structure was assigned primarily from nitroxide scanning experiments in which the solvent accessibility and mobility of a nitroxide probe were measured as a function of residue number. Seven beta-strands were identified and their orientation relative to the aqueous solvent determined, thus defining the residues lining the hydrophobic core. The pairwise packing of adjacent strands in the primary structure was deduced from patterns of proximities in nitroxide pairs with one member on the exposed surface of each strand. In addition to identifying supersecondary structures, these proximities revealed that the seven strands are arranged in two beta-sheets. The overall packing of the two sheets was determined by application of the general rules of protein structure and from proximities in nitroxide pairs designed to distinguish between known all beta-sheet folds. Our data are consistent with an immunoglobulin-like fold consisting of two aligned beta-sheets. Comparison of this folding pattern to that of the evolutionary distant alpha-crystallin domain in Methanococcus jannaschii heat-shock protein 16.5 reveals a conserved core structure with the differences sequestered at one edge of the beta-sandwich. A beta-strand deletion in alphaA-crystallin disrupts a subunit interface and allows for a different dimerization motif. Putative substrate binding regions appear to include a buried loop and a buried turn, suggesting that the chaperone function involves a disassembly of the oligomer.  相似文献   

11.
Huang X  Zhou HX 《Biophysical journal》2006,91(7):2451-2463
Molecular dynamics simulations were performed to unfold a homologous pair of thermophilic and mesophilic cold shock proteins at high temperatures. The two proteins differ in just 11 of 66 residues and have very similar structures with a closed five-stranded antiparallel beta-barrel. A long flexible loop connects the N-terminal side of the barrel, formed by three strands (beta1-beta3), with the C-terminal side, formed by two strands (beta4-beta5). The two proteins were found to follow the same unfolding pathway, but with the thermophilic protein showing much slower unfolding. Unfolding started with the melting of C-terminal strands, leading to exposure of the hydrophobic core. Subsequent melting of beta3 and the beta-hairpin formed by the first two strands then resulted in unfolding of the whole protein. The slower unfolding of the thermophilic protein could be attributed to ion pair formation of Arg-3 with Glu-46, Glu-21, and the C-terminal. These ion pairs were also found to be important for the difference in folding stability between the pair of proteins. Thus electrostatic interactions appear to play similar roles in the difference in folding stability and kinetics between the pair of proteins.  相似文献   

12.
Based on the tertiary structure of the ribosome-inactivating protein alpha-sarcin, domains that are responsible for hydrolyzing ribosomes and naked RNA have been dissected. In this study, we found that the head-to-tail interaction between the first amino beta-strand and the last carboxyl beta-strand is not involved in catalyzing the hydrolysis of ribosomes or ribonucleic acids. Instead, a four-strand pleated beta-sheet is indispensable for catalyzing both substrates, suggesting that alpha-sarcin and ribonuclease T1 (RNase T1) share a similar catalytic center. The integrity of an amino beta-hairpin and that of the loop L3 in alpha-sarcin are crucial for recognizing and hydrolyzing ribosomes in vitro and in vivo. However, a mutant protein without the beta-hairpin structure, or with a disrupted loop L3, is still capable of digesting ribonucleic acids. The functional involvement of the beta-hairpin and the loop L3 in the sarcin stem/loop RNA of ribosomes is demonstrated by a docking model, suggesting that the two structures are in essence naturally designed to distinguish ribosome-inactivating proteins from RNase T1 to inactivate ribosomes.  相似文献   

13.
The determination of the nuclear magnetic resonance structure of reduced E. coli glutaredoxin in aqueous solution is described. Based on nearly complete, sequence-specific resonance assignments, 813 nuclear Overhauser effect distance constraints and 191 dihedral angle constraints were employed as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of reduced glutaredoxin is made up of three helices and four-stranded beta-sheet. The first strand of the beta-sheet (residues 2 to 7) runs parallel to the second strand (32 to 37) and antiparallel to the third strand (61 to 64), and the sheet is extended in an antiparallel fashion with a fourth strand (67 to 69). The first helix with residues 13 to 28 and the last helix (71 to 83) run parallel to each other on one side of the beta-sheet, with their direction opposite to that of the two parallel beta-strands, and the helix formed by residues 44 to 53 fills space available due to the twist of the beta-sheet and the reduced length of the last two beta-strands. The active site Cys11-Pro-Tyr-Cys14 is located after the first beta-strand and occupies the latter part of the loop connecting this strand with the first helix.  相似文献   

14.
Type IV pili are long, thin fibres, which extend from the surface of the bacterial pathogen Neisseria meningitidis; they play a key role in adhesion and colonisation of host cells. PilP is a lipoprotein, suggested to be involved in the assembly and stabilization of an outer membrane protein, PilQ, which is required for pilus formation. Here we describe the expression of a recombinant fragment of PilP, spanning residues 20 to 181, and determination of the solution structure of a folded domain, spanning residues 85 to 163, by NMR. The N-terminal third of the protein, from residues 20 to 84, is apparently unfolded. Protease digestion yielded a 113 residue fragment that contained the folded domain. The domain adopts a simple beta-sandwich type fold, consisting of a three-stranded beta-sheet packed against a four-stranded beta-sheet. There is also a short segment of 3(10) helix at the N-terminal part of the folded domain. We were unable to identify any other proteins that are closely related in structure to the PilP domain, although the fold appears to be distantly related to the lipocalin family. Over 40 homologues of PilP have been identified in Gram-negative bacteria and the majority of conserved residues lie within the folded domain. The fourth beta-strand and adjacent loop regions contain a high proportion of conserved residues, including three glycine residues, which seem to play a role in linking the two beta-sheets. The two beta-sheets pack together to form a crevice, lined with conserved hydrophobic residues: we suggest that this feature could act as a binding site for a small ligand. The results show that PilP and its homologues have a conserved, folded domain at the C-terminal end of the protein that may be involved in mediating binding to hydrophobic ligands.  相似文献   

15.
The Golgi-associated, gamma-adaptin-related, ADP-ribosylation-factor binding proteins (GGAs) and adaptor protein (AP)-1 are adaptors involved in clathrin-mediated transport between the trans-Golgi network and endosomal system. The appendage domains of GGAs and the AP-1 gamma-adaptin subunit are structurally homologous and have been proposed to bind to accessory proteins via interaction with short sequences containing phenylalanines and acidic residues. Here we present the structure of the human GGA1 appendage in complex with its cognate binding peptide from the p56 accessory protein (DDDDFGGFEAAETFD) as determined by X-ray crystallography. The interaction is governed predominantly by packing of the first two phenylalanine residues of the peptide with conserved basic and hydrophobic residues from GGA1. Additionally, several main chain hydrogen bonds cause the peptide to form an additional beta-strand on the edge of the preexisting beta-sheet of the protein. Isothermal titration calorimetry was used to assess the affinities of different peptides for the GGA and gamma-appendage domains.  相似文献   

16.
The crystal structure of a dimeric apo form of the soluble quinoprotein glucose dehydrogenase (s-GDH) from Acinetobacter calcoaceticus has been solved by multiple isomorphous replacement followed by density modification, and was subsequently refined at 1. 72 A resolution to a final crystallographic R-factor of 16.5% and free R-factor of 20.8% [corrected]. The s-GDH monomer has a beta-propeller fold consisting of six four-stranded anti-parallel beta-sheets aligned around a pseudo 6-fold symmetry axis. The enzyme binds three calcium ions per monomer, two of which are located in the dimer interface. The third is bound in the putative active site, where it may bind and functionalize the pyrroloquinoline quinone (PQQ) cofactor. A data base search unexpectedly showed that four uncharacterized protein sequences are homologous to s-GDH with many residues in the putative active site absolutely conserved. This indicates that these homologs may have a similar structure and that they may catalyze similar PQQ-dependent reactions.A structure-based sequence alignment of the six four-stranded beta-sheets in s-GDH's beta-propeller fold shows an internally conserved sequence repeat that gives rise to two distinct conserved structural motifs. The first structural motif is found at the corner of the short beta-turn between the inner two beta-strands of the beta-sheets, where an Asp side-chain points back into the beta-sheet to form a hydrogen-bond with the OH/NH of a Tyr/Trp side-chain in the same beta-sheet. The second motif involves an Arg/Lys side-chain in the C beta-strand of one beta-sheet, which forms a bidentate salt-bridge with an Asp/Glu in the CD loop of the next beta-sheet. These intra and inter-beta-sheet hydrogen-bonds are likely to contribute to the stability of the s-GDH beta-propeller fold.  相似文献   

17.
A stable, partially structured state of ubiquitin, the A-state, is formed at pH 2.0 in 60% methanol/40% water at 298 K. Detailed characterization of the structure of this state has been carried out by 2D NMR spectroscopy. Assignment of slowly exchanging amide resonances protected from the solvent in the native and A-state shows that gross structural reorganization of the protein has not occurred and that the A-state contains a subset of the interactions present in the native state (N-state). Vicinal coupling constants and NOESY data show the presence of the first two strands of the five-strand beta-sheet that is present in the native protein and part of the third beta-strand. The hydrophobic face of the beta-sheet in the A-state is covered by a partially structured alpha-helix, tentatively assigned to residues 24-34, that is considerably more flexible than the alpha-helix in the N-state. There is evidence for some fixed side-chain--side-chain interactions between these two units of structure. The turn-rich area of the protein, which contains seven reverse turns and a short piece of 3(10) helix, does not appear to be structured in the A-state and is approaching random coil.  相似文献   

18.
Improving the prediction of secondary structure of 'TIM-barrel' enzymes.   总被引:1,自引:0,他引:1  
The information contained in aligned sets of homologous protein sequences should improve the score of secondary structure prediction. Seven different enzymes having the (beta/alpha)8 or TIM-barrel fold were used to optimize the prediction with regard to this class of enzymes. The alpha-helix, beta-strand and loop propensities of the Garnier-Osguthorpe-Robson method were averaged at aligned residue positions, leading to a significant improvement over the average score obtained from single sequences. The increased accuracy correlates with the average sequence variability of the aligned set. Further improvements were obtained by using the following averaged properties as weights for the averaged state propensities: amphipathic moment and alpha-helix; hydropathy and beta-strand; chain flexibility and loop. The clustering of conserved residues at the C-terminal ends of the beta-strands was used as an additional positive weight for beta-strand propensity and increased the prediction of otherwise unpredicted beta-strands decisively. The automatic weighted prediction method identifies greater than 95% of the secondary structure elements of the set of seven TIM-barrel enzymes.  相似文献   

19.
The three-dimensional structure of the first epidermal growth factor (EGF)-like module from human factor IX has been determined in solution using two-dimensional nuclear magnetic resonance (in the absence of calcium and at pH 4.5). The structure was found to resemble closely that of EGF and the homologous transforming growth factor-alpha (TGF-alpha). Residues 60-65 form an antiparallel beta-sheet with residues 68-73. In the C-terminal subdomain a type II beta-turn is found between residues 74 and 77 and a five-residue turn is found between residues 79 and 83. Glu 78 and Leu 84 pair in an antiparallel beta-sheet conformation. In the N-terminal region a loop is found between residues 50 and 55 such that the side chains of both are positioned above the face of the beta-sheet. Residues 56-60 form a turn that leads into the first strand of the beta-sheet. Whereas the global fold closely resembles that of EGF, the N-terminal residues of the module (46-49) do not form a beta-strand but are ill-defined in the structure, probably due to the local flexibility of this region. The structure is discussed with reference to recent site-directed mutagenesis data, which have identified certain conserved residues as ligands for calcium.  相似文献   

20.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serpin family of serine proteinase inhibitors. Serpins inhibit their target proteinases by an ester bond being formed between the active site serine of the proteinase and the P1 residue of the reactive centre loop (RCL) of the serpin, followed by insertion of the RCL into beta-sheet A of the serpin. Concomitantly, there are conformational changes in the flexible joint region lateral to beta-sheet A. We have now, by site-directed mutagenesis, mapped the epitope for a monoclonal antibody, which protects the inhibitory activity of PAI-1 against inactivation by a variety of agents acting on beta-sheet A and the flexible joint region. Curiously, the epitope is localized in alpha-helix C and the loop connecting alpha-helix I and beta-strand 5A, on the side of PAI-1 opposite to beta-sheet A and distantly from the flexible joint region. By a combination of site-directed mutagenesis and antibody protection against an inactivating organochemical ligand, we were able to identify a residue involved in conferring the antibody-induced conformational change from the epitope to the rest of the molecule. We have thus provided evidence for communication between secondary structural elements not previously known to interact in serpins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号