首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
BACKGROUND: Wolbachia are bacterial endosymbionts of many arthropod species in which they manipulate reproductive functions. The distribution of these bacteria in the Drosophila ovarian cells at different stages of oogenesis has been amply described. The pathways along which Wolbachia influences Drosophila oogenesis have been, so far, little studied. It is known that Wolbachia are abundant in the somatic stem cell niche of the Drosophila germarium. A checkpoint, where programmed cell death, or apoptosis, can occur, is located in region 2a/2b of the germarium, which comprises niche cells. Here we address the question whether or not the presence of Wolbachia in germarium cells can affect the frequency of cyst apoptosis in the checkpoint. RESULTS: Our current fluorescent microscopic observations showed that the wMel and wMelPop strains had different effects on female germline cells of D. melanogaster. The Wolbachia strain wMel did not affect the frequency of apoptosis in cells of the germarium. The presence of the Wolbachia strain wMelPop in the D. melanogasterw1118 ovaries increased the number of germaria where cells underwent apoptosis in the checkpoint. Based on the appearance in the electron microscope, there was no difference in morphological features of apoptotic cystocytes between Wolbachia-infected and uninfected flies. Bacteria with normal ultrastructure and large numbers of degenerating bacteria were found in the dying cyst cells. CONCLUSIONS: Our current study demonstrated that the Wolbachia strain wMelPop affects the egg chamber formation in the D. melanogaster ovaries. This led to an increase in the number of germaria containing apoptotic cells. It is suggested that Wolbachia can adversely interfere either with the cystocyte differentiation into the oocyte or with the division of somatic stem cells giving rise to follicle cells and, as a consequence, to improper ratio of germline cells to follicle cells and, ultimately, to apoptosis of cysts. There was no similar adverse effect in D. melanogaster Canton S infected with the Wolbachia strain wMel. This was taken to mean that the observed increase in frequency of apoptosis was not the general effect of Wolbachia on germline cells of D. melanogaster, it was rather induced by the virulent Wolbachia strain wMelPop.  相似文献   

2.
Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups — wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ∼21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.  相似文献   

3.
Wolbachia is an endosymbiont prevalent in arthropods. To maximize its transmission thorough the female germline, Wolbachia induces in infected hosts male‐to‐female transformation, male killing, parthenogenesis, and cytoplasmic incompatibility, depending on the host species and Wolbachia strain involved. However, the molecular mechanisms underlying these host manipulations by Wolbachia remain largely unknown. The Wolbachia strain wMel, an inhabitant of Drosophila melanogaster, impairs host oogenesis only when transplanted into a heterologous host, for example, Drosophila simulans. We found that egg polarity defects induced by wMel infection in D. simulans can be recapitulated in the natural host D. melanogaster by transgenic overexpression of a variant of the Wolbachia protein Toxic manipulator of oogenesis (TomO), TomOwMel?HS, in the female germline. RNA immunoprecipitation assays demonstrated that TomO physically associates with orb mRNA, which, as a result, fails to interact with the translation repressor Cup. This leads to precocious translation of Orb, a posterior determinant, and thereby to the misspecification of oocytes and accompanying polarity defects. We propose that the ability of TomO to bind to orb mRNA might provide a means for Wolbachia to enter the oocyte located at the posterior end of the egg chamber, thereby accomplishing secure maternal transmission thorough the female germline.  相似文献   

4.

Background

One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults.

Results

To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups.

Conclusions

The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host insect.
  相似文献   

5.
The maternally inherited bacterium Wolbachia infects the germline of most arthropod species. Using Drosophila simulans and D. melanogaster, we demonstrate that localization of Wolbachia to the fat bodies and adult brain is likely also a conserved feature of Wolbachia infection. Examination of three Wolbachia strains (WMel, WRiv, WPop) revealed that the bacteria preferentially concentrate in the central brain with low titres in the optic lobes. Distribution within regions of the central brain is largely determined by the Wolbachia strain, while the titre is influenced by both, the host species and the bacteria strain. In neurons of the central brain and ventral nerve cord, Wolbachia preferentially localizes to the neuronal cell bodies but not to axons. All examined Wolbachia strains are present intracellularly or in extracellular clusters, with the pathogenic WPop strain exhibiting the largest and most abundant clusters. We also discovered that 16 of 40 lines from the Drosophila Genetic Reference Panel are Wolbachia infected. Direct comparison of Wolbachia infected and cured lines from this panel reveals that differences in physiological traits (chill coma recovery, starvation, longevity) are partially due to host line influences. In addition, a tetracycline‐induced increase in Drosophila longevity was detected many generations after treatment.  相似文献   

6.
Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogasterWolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology.  相似文献   

7.
While a number of studies have identified host factors that influence endosymbiont titer, little is known concerning environmental influences on titer. Here we examined nutrient impact on maternally transmitted Wolbachia endosymbionts in Drosophila. We demonstrate that Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced Wolbachia titers in oogenesis, respectively. The yeast-induced Wolbachia depletion is mediated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1 with the small molecule rapamycin dramatically increases oocyte Wolbachia titer, whereas hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte titer. Exposure to yeast-enriched diets altered Wolbachia nucleoid morphology in oogenesis. Furthermore, dietary yeast increased somatic Wolbachia titer overall, though not in the central nervous system. These findings highlight the interactions between Wolbachia and germline cells as strongly nutrient-sensitive, and implicate conserved host signaling pathways by which nutrients influence Wolbachia titer.  相似文献   

8.
9.
Wolbachia are vertically transmitted, obligatory intracellular bacteria that infect a great number of species of arthropods and nematodes. In insects, they are mainly known for disrupting the reproductive biology of their hosts in order to increase their transmission through the female germline. In Drosophila melanogaster, however, a strong and consistent effect of Wolbachia infection has not been found. Here we report that a bacterial infection renders D. melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies. We identify these resistance-inducing bacteria as Wolbachia. Furthermore, we show that Wolbachia also increases resistance of Drosophila to two other RNA virus infections (Nora virus and Flock House virus) but not to a DNA virus infection (Insect Iridescent Virus 6). These results identify a new major factor regulating D. melanogaster resistance to infection by RNA viruses and contribute to the idea that the response of a host to a particular pathogen also depends on its interactions with other microorganisms. This is also, to our knowledge, the first report of a strong beneficial effect of Wolbachia infection in D. melanogaster. The induced resistance to natural viral pathogens may explain Wolbachia prevalence in natural populations and represents a novel Wolbachia–host interaction.  相似文献   

10.
During Drosophila oogenesis, transposable element (TE) repression involves the Piwi-interacting RNA (piRNA) pathway which ensures genome integrity for the next generation. We developed a transgenic model to study repression of the Idefix retrotransposon in the germline. Using a candidate gene KD-approach, we identified differences in the spatio-temporal requirements of the piRNA pathway components for piRNA-mediated silencing. Some of them (Aub, Vasa, Spn-E) are necessary in very early stages of oogenesis within the germarium and appear to be less important for efficient TE silencing thereafter. Others (Piwi, Ago3, Mael) are required at all stages of oogenesis. Moreover, during early oogenesis, in the dividing cysts within the germarium, Idefix anti-sense transgenes escape host control, and this is associated with very low piwi expression. Silencing of P-element-based transgenes is also strongly weakened in these cysts. This region, termed the ‘Piwiless pocket’ or Pilp, may ensure that new TE insertions occur and are transmitted to the next generation, thereby contributing to genome dynamics. In contrast, piRNA-mediated silencing is strong in germline stem cells in which TE mobilization is tightly repressed ensuring the continued production of viable germline cysts.  相似文献   

11.
The egg chamber of Drosophila melanogaster consists of 16 interconnected cells surrounded by a monolayer of follicle cells. Each 16 cell cluster (from which the oocyte and 15 nurse cells differentiate) arises within the germarial region of an ovariole. To study the ultrastructure of the early stages in the formation and differentiation of egg chambers, a three dimensional reconstruction was made from serial thin sections through a germarium from a 24-hour old, virgin female. The germarium was found to be subdivided into three regions: (1) The mitotically active area where clusters of 16 cells originate from a series of cystocyte divisions, (2) the region where these cells interact with mesodermal cells, and (3) the region where the germarial cyst is transformed into the first egg chamber in the vitellarium. Since cystocytes were found to decrease in size with each division, the possibility exists that cell size may determine when the divisions cease. Models are presented which mimic with varying degrees of success the developmental changes the germarial cells undergo with time. Hypothesis are developed to explain why stem line oogonia are restricted to the anterior portion of the germarium, why mesodermal cells first interact with cystocytes in region 2, and why the oocyte is oriented posteriorly. The nuclear differentiations of the component cells of the chamber are described and correlated with observed differences in radiosensitivity. Symbionts were observed in the germaria of several strains of Drosophila, and the bearing of these findings upon nutritional studies is discussed.  相似文献   

12.
《Autophagy》2013,9(3):298-302
Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.  相似文献   

13.
FMRP is an RNA binding protein linked to the most common form of inherited mental retardation, Fragile X syndrome (FraX). In addition to severe cognitive deficits, FraX etiology includes postpubescent macroorchidism, which is thought to result from overproliferation. Using a Drosophila FraX model, we show that FMRP controls germline proliferation during oogenesis. dFmr1 null ovaries contain egg chambers with both fewer and supranumerary germ cells. The mutant germaria contain a significantly increased number of cyclin E and PhosphoHistone H3 positive cells, suggesting that loss of FMRP leads to defects in cell cycle progression. BrdU incorporation and flow cytometry data suggest that, in addition to proliferation, germline endoreplication and ploidy are also affected by the loss of FMRP during ovary development. Here we report that FMRP controls the levels of cbl mRNA in the ovary and that reducing cbl gene dosage by half rescues the dFmr1 oogenesis phenotypes. These data support a model whereby FMRP controls germline proliferation by regulating the expression of cbl in the developing ovary.  相似文献   

14.
In the Drosophila oogenesis, germline stem cells (GSCs) continuously self-renew and differentiate into daughter cells for consecutive germline lineage commitment. This developmental process has become an in vivo working platform for studying adult stem cell fate regulation. An increasing number of studies have shown that while concerted actions of extrinsic signals from the niche and intrinsic regulatory machineries control GSC self-renewal and germline differentiation, epigenetic regulation is implicated in the process. Here, we report that Brahma (Brm), the ATPase subunit of the Drosophila SWI/SNF chromatin-remodeling complexes, is required for maintaining GSC fate. Removal or knockdown of Brm function in either germline or niche cells causes a GSC loss, but does not disrupt normal germline differentiation within the germarium evidenced at the molecular and morphological levels. There are two Drosophila SWI/SNF complexes: the Brm-associated protein (BAP) complex and the polybromo-containing BAP (PBAP) complex. More genetic studies reveal that mutations in polybromo/bap180, rather than gene encoding Osa, the BAP complex-specific subunit, elicit a defect in GSC maintenance reminiscent of the brm mutant phenotype. Further genetic interaction test suggests a functional association between brm and polybromo in controlling GSC self-renewal. Taken together, studies in this paper provide the first demonstration that Brm in the form of the PBAP complex functions in the GSC fate regulation.  相似文献   

15.
The dorsal anterior region of the follicle cells (FCs) in the developing Drosophila egg gives rise to the respiratory eggshell appendages. These tubular structures display a wide range of qualitative and quantitative variations across Drosophila species, providing a remarkable example of a rapidly evolving morphology. In D. melanogaster, the bone morphogenetic protein (BMP) signaling pathway is an important regulator of FCs patterning and dorsal appendages morphology. To explore the mechanisms underlying the diversification of eggshell patterning, we analyzed BMP signaling in the FCs of 16 Drosophila species that span 45 million years of evolution. We found that the spatial patterns of BMP signaling in the FCs are dynamic and exhibit a range of interspecies' variations. In most of the species examined, the dynamics of BMP signaling correlate with the expression of the type I BMP receptor thickveins (tkv). This correlation suggests that interspecies' variations of tkv expression are responsible for the diversification of BMP signaling during oogenesis. This model was supported by genetic manipulations of tkv expression in the FCs of D. melanogaster that successfully recapitulated the signaling diversities found in the other species. Our results suggest that regulation of receptor expression mediates spatial diversification of BMP signaling in Drosophila oogenesis, and they provide insight into a mechanism underlying the evolution of eggshell patterning.  相似文献   

16.
R. Marin  R. M. Tanguay 《Chromosoma》1996,105(3):142-149
The developmental and heat shock-induced expression of the small heat shock protein Hsp27 was investigated by confocal microscopy of whole-mount immunostained preparations of ovarioles during oogenesis inDrosophila melanogaster. In unstressed flies, Hsp27 was mainly associated with germline nurse cells throughout egg development. A small group of somatic follicle cells also expressed Hsp27 specifically at stages 8 to 10 of oogenesis. Interestingly, this Hsp showed a different intracellular localization depending on the stages of egg chamber development. Thus Hsp27 was localized in the nucleus of nurse cells during the first stages of oogenesis (from germarium to stage 6) whereas it showed a perinuclear and cytoplasmic localization from stage 8. After a heat shock, Hsp27 accumulated in somatic follicle cells surrounding the egg chamber whereas the expression of this small Hsp did not seem to be enhanced in nurse cells. The stage-dependent pattern of intracellular localization of Hsp27 observed in nurse cells of unstressed flies was also observed following heat shock. At late stages of oogenesis, Hsp27 also showed a perinuclear distribution in follicle and nurse cells after heat stress. These observations suggest that different factors may modulate the expression and intracellular distribution of Hsp27. This modulation may be associated with the specific activities occurring in each particular cell type throughout oogenesis during both normal development and under heat shock conditions. Edited by: E.R. Schmidt  相似文献   

17.
The toucan (toc) gene is required in the germline for somatic cell patterning during Drosophila oogenesis. To better understand the function of toc, we performed a detailed analysis of the distribution of the Toucan protein during oogenesis. Toc expression is restricted to the germline cells and shows a dynamic distribution pattern throughout follicle development. Mislocalization of the Toc protein in mutant follicles in which the microtubule network is altered indicates that microtubules play a role in Toc localization during oogenesis.  相似文献   

18.
Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic221/+ and chic1320/+) or villin (qua6-396/+) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic221 heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.  相似文献   

19.
Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophila species sampled in different regions and at different time points were analyzed. Wolbachia is absent in lines of Drosophila willistoni collected before the 1970s, but more recent samples are infected with a strain designated wWil. Wolbachia is absent in all other species of the willistoni group. Polymorphic wWil-related strains were detected in some saltans group species, with D. septentriosaltans being coinfected with at least four variants. Based on wsp and ftsZ sequence data, wWil of D. willistoni is identical to wAu, a strain isolated from D. simulans, but can be discriminated when using a polymorphic minisatellite marker. In contrast to wAu, which infects both germ line and somatic tissues of D. simulans, wWil is found exclusively in the primordial germ line cells of D. willistoni embryos. We report on a pool of closely related Wolbachia strains in Neotropical Drosophila species as a potential source for the wAu strain in D. simulans. Possible evolutionary scenarios reconstructing the infection history of wAu-like Wolbachia in Neotropical Drosophila species and the Old World species D. simulans are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号