首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Because antigen-specific cytotoxic T-lymphocytes (CTLs) are major effector cells in tumor immunity, more efficient delivery of tumor-associated antigens to the major histocompatibility complex class I-presentation pathway in antigen-presenting cells (APCs) will substantially contribute to establish more effective cancer immunotherapy. Herein, we demonstrated that a combinational approach based on the antigen-delivery system using poly(gamma-glutamic acid) nanoparticles (gamma-PGA NPs) and an endoplasmic reticulum (ER)-transport system containing an ER-insertion signal sequence (Eriss) significantly enhanced the ability of a peptide vaccine to induce cellular immune responses, including CTL activity. Immunization with gamma-PGA NPs entrapping Eriss-conjugated antigenic peptides markedly amplified and activated CTLs and interferon-gamma-secreting cells specific for the antigen, whereas no cellular immune responses were detected following vaccination with only one of the systems alone. Our data provide evidence that efficient delivery of antigenic peptides into APCs, as well as active ER-translocation of antigenic peptides in APCs should be considered in the development of peptide-based cancer immunotherapy.  相似文献   

3.
To detect viral infections and tumors, CD8+ T lymphocytes monitor cells for the presence of antigenic peptides bound to MHC class I molecules. The majority of MHC class I-presented peptides are generated from the cleavage of cellular and viral proteins by the ubiquitin-proteasome pathway. Many of the oligopeptides produced by this process are too long to stably bind to MHC class I molecules and require further trimming for presentation. Leucine aminopeptidase (LAP) is an IFN-inducible cytosolic aminopeptidase that can trim precursor peptides to mature epitopes and has been thought to play an important role in Ag presentation. To examine the role of LAP in generating MHC class I peptides in vivo, we generated LAP-deficient mice and LAP-deficient cell lines. These mutant mice and cells are viable and grow normally. The trimming of peptides in LAP-deficient cells is not reduced under basal conditions or after stimulation with IFN. Similarly, there is no reduction in presentation of peptides from precursor or full-length Ag constructs or in the overall supply of peptides from cellular proteins to MHC class I molecules even after stimulation with IFN. After viral infection, LAP-deficient mice generate normal CTL responses to seven epitopes from three different viruses. These data demonstrate that LAP is not an essential enzyme for generating most MHC class I-presented peptides and reveal redundancy in the function of cellular aminopeptidases.  相似文献   

4.
We find that expression of the membrane dipeptidyl carboxypeptidase angiotensin-converting enzyme (ACE) enhances presentation of certain endogenously synthesized peptides to major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes. ACE appears to function only in an intracellular secretory compartment of antigen-presenting cells. ACE-enhanced antigen presentation requires the expression of the putative antigenic peptide transporters, TAP1 and TAP2. These findings demonstrate that a protease can influence the processing of endogenously synthesized antigens and strongly suggest that longer peptides can be transported from the cytosol to a secretory compartment where trimming of antigenic peptides to the lengths preferred by MHC class I molecules can occur if the appropriate protease is present.  相似文献   

5.
The majority of cellular proteins are degraded by proteasomes within the ubiquitin-proteasome ATP-dependent degradation pathway. Products of proteasomal activity are short peptides that are further hydrolysed by proteases to single amino acids. However, some peptides can escape this degradation, being selected and taken up by major histocompatibility complex (MHC) class I molecules for presentation to the immune system on the cell surface. MHC class I molecules are highly selective and specific in terms of ligand binding. Variability of peptides produced in living cells arises in a variety of ways, ensuring fast and efficient immune responses. Substitution of constitutive proteasomal subunits with immunosubunits leads to conformational changes in the substrate binding channels, resulting in a modified protein cleavage pattern and consequently in the generation of new antigenic peptides. The recently discovered event of proteasomal peptide splicing opens new horizons in the understanding of additional functions that proteasomes apparently possess. Whether peptide splicing is an occasional side product of proteasomal activity still needs to be clarified. Both gamma-interferon-induced immunoproteasomes and peptide splicing represent two significant events providing increased diversity of antigenic peptides for flexible and fine-tuned immune response.  相似文献   

6.
Cytotoxic CD8(+) T cells recognize the antigenic peptides presented by class I major histocompatibility complex (MHC) molecules. These T cells have key roles in infectious diseases, autoimmunity and tumor immunology, but there is currently no unbiased method for the reliable identification of their target antigens. This is because of the low affinities of antigen-specific T cell receptors (TCR) to their target MHC-peptide complexes, the polyspecificity of these TCRs and the requirement that these TCRs recognize protein antigens that have been processed by antigen-presenting cells (APCs). Here we describe a technology for the unbiased identification of the antigenic peptides presented by MHC class I molecules. The technology uses plasmid-encoded combinatorial peptide libraries and a single-cell detection system. We validated this approach using a well-characterized influenza-virus–specific TCR, MHC and peptide combination. Single APCs carrying antigenic peptides can be detected among several million APCs that carry irrelevant peptides. The identified peptide sequences showed a converging pattern of mimotopes that revealed the parent influenza antigen. This technique should be generally applicable to the identification of disease-relevant T cell antigens.  相似文献   

7.
We have utilized a free-solution-isoelectric focusing technique (FS-IEF) to obtain chaperone-rich cell lysates (CRCL) fractions from clarified tumor homogenates. The FS-IEF technique for enriching multiple chaperones from tumor lysate is relatively easy and rapid, yielding sufficient immunogenic material for clinical use. We have shown that tumor-derived CRCL carry antigenic peptides. Dendritic cells (DCs) uptake CRCL and cross-present the chaperoned peptides to T cells. Tumor-derived CRCL induce protective immune responses against a diverse range of murine tumor types in different genetic backgrounds. When compared to purified heat shock protein 70 (HSP70), single antigenic peptide or unfractionated lysate, CRCL have superior ability to activate/mature DCs and are able to induce potent, long lasting and tumor specific T-cell-mediated immunity. While CRCL vaccines were effective as stand-alone therapies, the enhanced immunogenicity arising from CRCL-pulsed DC as a vaccine indicates that CRCL could be the antigen source of choice for DC-based anti-cancer immunotherapies. The nature of CRCL's enhanced immunogenicity may lie in the broader antigenic peptide repertoire as well as the superior immune activation capacity of CRCL. Exongenous CRCL also supply danger signals in the context of apoptotic tumor cells and enhance the immunogenicity of apoptotic tumor cells, leading to tumor-specific T cell dependent long-term immunity. Moreover, CRCL based vaccines can be effectively combined with chemotherapy to treat cancer. Our findings indicate that CRCL have prominent adjuvant effects and are effective sources of tumor antigens for pulsing DCs. Tumor-derived CRCL are promising anti-cancer vaccines that warrant clinical research and development.  相似文献   

8.
Previous studies have shown that glutaraldehyde-fixed cells can present fragmented, but not native, Ag to class II-restricted T cells. This presumably occurs via direct binding of peptides to class II molecules at the cell surface. More recently, it has been shown that viable target cells can present peptides and endogenous, but not exogenous, protein Ag in association with class I MHC molecules to CTL. We have derived CTL specific for a chicken OVA peptide (OVA258-276) recognized in association with H-2Kb. These CTL recognize target cells that endogenously synthesize OVA and cells "loaded" with native OVA but fail to recognize target cells in the presence of exogenous native OVA. Thus, OVA must be intracellularly located to be processed and presented for CTL recognition. It remains unclear, however, whether exogenous peptides require internalization and further processing by target cells or are able to associate directly with class I molecules at the cell surface for CTL recognition. We provide evidence that glutaraldehyde-fixed cells can present synthetic peptides to H-2Kb- and H-2Db-restricted CTL and that such presentation does not require internalization or processing. The peptides used range in size from 16 to 48 amino acids in length. In contrast, glutaraldehyde-fixed cells are incapable of presenting Ag to CTL specific for influenza nucleoprotein and OVA if the cells are fixed within 1 h of viral influenza infection or loading with OVA. Thus, CTL recognition of antigenic peptides appears to occur via direct binding of peptides to class I molecules at the cell surface and does not require any intracellular processing events.  相似文献   

9.
The processing and MHC class I-restricted presentation of antigenic peptides derived from the p60 protein of the facultative intracellular bacterium Listeria monocytogenes is tightly linked to bacterial protein synthesis. We used non-linear regression analysis to fit a mathematical model of bacterial antigen processing to a published experimental data set showing the accumulation and decay of p60-derived antigenic peptides in L. monocytogenes-infected cells. Two alternative models equally describe the experimental data. The simulation accounting for a stable and a hypothetical rapidly degraded form of antigen predicts that the antigenic peptides p60 217-225 and p60 449-457 are derived from a putative instable form of p60 with an average intracellular half-life of approximately 3 minutes accounting for approximately 31% of all p60 molecules synthesized. The alternative model predicts that both antigenic peptides are processed from p60 degraded intracellularly with a half-life of 109 min and that antigen processing only occurs as long as bacterial protein synthesis is not inhibited. In order to decide between both models the intracellular accumulation of p60 in infected cells was studied experimentally and compared with model predictions. Inhibition of p60 degradation by the proteasome inhibitor epoxomicin revealed that during the first 3 h post infection approximately 30% of synthesized p60 molecules were degraded. This value is significantly lower than the approximately 50% degradation of p60 that would be expected in the presence of the predicted putative short-lived state of p60 and also fits precisely with the predictions of the alternative model, indicating that the tight connection of bacterial protein biosynthesis and antigen processing and presentation of L. monocyctogenes-derived antigenic peptides is not caused by the presence of a highly instable antigenic substrate.  相似文献   

10.
Synthetic peptides are safe and relatively cheap vaccine components. However, the efficiency of peptide vaccines is limited by peptide interaction with non-professional antigen-presenting cells, which may hamper induction of productive T-cell responses. This paper argues that peptide vaccines should be modified for exclusive uptake by cells with the capacity to prime T-cell responses. Moreover, design of peptide vaccines should take intracellular antigen processing into account and exploit cellular mechanisms of proteolysis, transport and HLA class I assembly of antigenic peptides to enhance efficiency of T-cell priming and stimulation.  相似文献   

11.
Murine embryonal carcinoma cells can be induced to differentiate in vitro by various physical and chemical means. We report here that inhibition of ornithine decarboxylase activity with a specific enzyme-activated inhibitor, alpha-difluoromethylornithine, can induce differentiation in embryonal carcinoma cells. The differentiated phenotype can be distinguished from undifferentiated embryonal carcinoma cells by altered cellular morphology, biochemical and cell surface antigenic properties. These results suggest that alterations in the levels of cellular polyamines may play a role in embryonal carcinoma cell differentiation.  相似文献   

12.
Immunization with heat shock proteins (hsp) isolated from cancer cells has been shown to induce a protective antitumor response. The mechanism of hsp-dependent cellular immunity has been attributed to a variety of immunological activities mediated by hsp. Hsp have been shown to bind antigenic peptides, trim the bound peptides by intrinsic enzymatic activity, improve endocytosis of the chaperoned peptides by APCs, and enhance the ability of APCs to stimulate peptide-specific T cells. We have investigated the potential capacity of hsp70 and gp96 to function as a mediator for Ag-specific CTL stimulation in an in vitro model for human melanoma. Repetitive stimulation of PBLs by autologous DCs loaded with melanoma-derived hsp did not increase the frequency of T cells directed against immunodominant peptides of melanoma-associated Ags Melan-A and tyrosinase. In contrast, repeated T cell stimulation with peptide-pulsed DCs enhanced the number of peptide-specific T cells, allowing HLA/peptide multimer-guided T cell cloning. We succeeded in demonstrating that the established HLA-A2-restricted CTL clones recognized HLA-A2(+) APCs exogenously loaded with the respective melanoma peptide as well as melanoma cells processing and presenting these peptides in the context of HLA-A2. We were not able to show that these melanoma-reactive CTL clones were stimulated by autologous dendritic cells pulsed with melanoma-derived hsp. These results are discussed with respect to various models for proving the role of hsp in T cell stimulation and to recent findings that part of the immunological antitumor activities reported for hsp are independent of the chaperoned peptides.  相似文献   

13.
Proteasomal cleavage of proteins is the first step in the processing of most antigenic peptides that are presented to cytotoxic T cells. Still, its specificity and mechanism are not fully understood. To identify preferred sequence signals that are used for generation of antigenic peptides by the proteasome, we performed a rigorous analysis of the residues at the termini and flanking regions of naturally processed peptides eluted from MHC class I molecules. Our results show that both the C terminus (position P1 of the cleavage site) and its immediate flanking position (P1') possess significant signals. The N termini of the peptides show these signals only weakly, consistent with previous findings that antigenic peptides may be cleaved by the proteasome with N-terminal extensions. Nevertheless, we succeed to demonstrate indirectly that the N-terminal cleavage sites contain the same preferred signals at position P1'. This reinforces previous findings regarding the role of the P1' position of a cleavage site in determining the cleavage specificity, in addition to the well-known contribution of position P1. Our results apply to the generation of antigenic peptides and bare direct implications for the mechanism of proteasomal cleavage. We propose a model for proteasomal cleavage mechanism by which both ends of cleaved fragments are determined by the same cleavage signals, involving preferred residues at both P1 and P1' positions of a cleavage site. The compatibility of this model with experimental data on protein degradation products and generation of antigenic peptides is demonstrated.  相似文献   

14.
The heat shock protein, HSP70, is over-expressed in many tumours and acts at the crossroads of key intracellular processes in its role as a molecular chaperone. HSP70 associates with a vast array of peptides, some of which are antigenic and can mount adaptive immune responses against the tumour from which they are derived. The pool of peptides associated with HSP70 represents a unique barcode of protein metabolism in tumour cells. With a view to identifying unique protein targets that may be developed as tumour biomarkers, we used purified HSP70 and its associated peptide pool (HSP70–peptide complexes, HSP70-PCs) from different human breast tumour cell lines as targets for phage display biopanning. Our results show that HSP70-PCs from each cell line interact with unique sets of peptides within the phage display library. One of the peptides, termed IST, enriched in the biopanning process, was used in a ‘pull-down’ assay to identify the original protein from which the HSP70-associated peptides may have been derived. The eukaryotic translation initiation factor 3 (eIF-3), a member of the elongation factor EF1α family, and the HSP GRP78, were pulled down by the IST peptide. All of these proteins are known to be up-regulated in cancer cells. Immunohistochemical staining of tumour tissue microarrays showed that the peptide co-localised with HSP70 in breast tumour tissue. The data indicate that the reservoir of peptides associated with HSP70 can act as a unique indicator of cellular protein activity and a novel source of potential tumour biomarkers.  相似文献   

15.
Known commonly as molecular chaperones for proteins, heat shock proteins (HSPs) have also been found to chaperone small molecular weight cellular peptides. HSP-peptide complexes can prime T cell immunity specific against the peptides bound to HSPs, but not against HSPs per se. This immunomodulatory functions of HSPs are based on two intrinsic properties. One, HSPs are excellent adjuvants due to their ability to activate dendritic cells (DCs). Two, HSPs can bind directly to their receptors on DCs to then channel HSP-associated peptides to associate with MHC molecules. When a specific antigenic peptide is defined, this peptide can also be complexed with either tissue derived or recombinant HSPs in vitro to generate HSP-peptide complexes as peptide-specific vaccines. This article focuses on the methods commonly used to reconstitute HSP-peptide complexes, and discusses assays to verify the efficiency of complexing for immunotherapy against cancers and infectious diseases.  相似文献   

16.
T cell activation by nonself peptide-major histocompatibility complex (MHC) antigenic complexes can be blocked by particular sequence variants in a process termed T cell receptor antagonism. The inhibition mechanism is not understood, although such variants are encountered in viral infections and may aid immune evasion. Here, we study the effect of antagonist peptides on immunological synapse formation by T cells. This cellular communication process features early integrin engagement and T cell motility arrest, referred to as the "stop signal." We find that synapses formed on membranes presenting antagonist-agonist complexes display reduced MHC density, which leads to reduced T cell proliferation that is not overcome by the costimulatory ligands CD48 and B7-1. Most T cells fail to arrest and crawl slowly with a dense ICAM-1 crescent at the leading edge. Similar aberrant patterns of LFA-1/ICAM-1 engagement in live T-B couples correlate with reduced calcium flux and IL-2 secretion. Hence, antagonist peptides selectively disable MHC clustering and the stop signal, whereas LFA-1 valency up-regulation occurs normally.  相似文献   

17.
热激蛋白gp96可特异性结合来源于肿瘤和病毒的抗原肽,与抗原呈递细胞表面CD91等受体作用进入胞内,并在内质网中将结合的抗原通过抗原呈递链呈递给MHCI类分子,激活特异性T细胞。同时,与细胞表面Toll样受体(TLR)TLR2、TLR4等相互作用,激活天然免疫。近期研究发现调节性T细胞(Treg)对gp96免疫功能有显著抑制作用,随着对影响gp96免疫功能的免疫抑制机制的深入了解,以及利用汉逊酵母表达有免疫活性的全长gp96蛋白体系的建立,gp96将在治疗肿瘤及传染性疾病中发挥更大的作用。  相似文献   

18.
Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of antigen-presenting cells is an effective extracellular representation of the intracellular antigen content. The intracellular proteasome-dependent proteolytic machinery is required for generating MHC class I-presented peptides. These peptides appear to be derived mainly from newly synthesized defective ribosomal products, ensuring a rapid cytotoxic T lymphocyte-mediated immune response against infectious pathogens. Here we discuss the generation of MHC class I antigens on the basis of the currently understood molecular, biochemical and cellular mechanisms.  相似文献   

19.
Major histocompatibility complex (MHC) class II molecules (MHC-II) function by binding antigenic peptides and displaying these peptides on the surface of antigen presenting cells (APCs) for recognition by peptide-MHC-II (pMHC-II)-specific CD4 T cells. It is known that cell surface MHC-II can internalize, exchange antigenic peptides in endosomes, and rapidly recycle back to the plasma membrane; however, the molecular machinery and trafficking pathways utilized by internalizing/recycling MHC-II have not been identified. We now demonstrate that unlike newly synthesized invariant chain-associated MHC-II, mature cell surface pMHC-II complexes internalize following clathrin-, AP-2-, and dynamin-independent endocytosis pathways. Immunofluorescence microscopy of MHC-II expressing HeLa-CIITA cells, human B cells, and human DCs revealed that pMHC enters Arf6(+)Rab35(+)EHD1(+) tubular endosomes following endocytosis. These data contrast the internalization pathways followed by newly synthesized and peptide-loaded MHC-II molecules and demonstrates that cell surface pMHC-II internalize and rapidly recycle from early endocytic compartments in tubular endosomes.  相似文献   

20.
Immunodominant peptides in CD8 T cell responses to pathogens and tumors are not always tight binders to MHC class I molecules. Furthermore, antigenic peptides that bind weakly to the MHC can be problematic when designing vaccines to elicit CD8 T cells in vivo or for the production of MHC multimers for enumerating pathogen-specific T cells in vitro. Thus, to enhance peptide binding to MHC class I, we have engineered a disulfide bond to trap antigenic peptides into the binding groove of murine MHC class I molecules expressed as single-chain trimers or SCTs. These SCTs with disulfide traps, termed dtSCTs, oxidized properly in the endoplasmic reticulum, transited to the cell surface, and were recognized by T cells. Introducing a disulfide trap created remarkably tenacious MHC/peptide complexes because the peptide moiety of the dtSCT was not displaced by high-affinity competitor peptides, even when relatively weak binding peptides were incorporated into the dtSCT. This technology promises to be useful for DNA vaccination to elicit CD8 T cells, in vivo study of CD8 T cell development, and construction of multivalent MHC/peptide reagents for the enumeration and tracking of T cells-particularly when the antigenic peptide has relatively weak affinity for the MHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号