首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Grez  M Zrnig  J Nowock    M Ziegler 《Journal of virology》1991,65(9):4691-4698
The expression of Moloney murine leukemia virus (Mo-MuLV) and Mo-MuLV-derived vectors is restricted in undifferentiated mouse embryonal carcinoma and embryonal stem (ES) cells. We have previously described the isolation of retroviral mutants with host range properties expanded to embryonal cell lines. One of these mutants, the murine embryonic stem cell virus (MESV), is expressed in ES cell lines. Expression of MESV in these cells relies on DNA sequence motifs within the enhancer region of the viral long terminal repeat (LTR). Here we show that replacement of the Mo-MuLV enhancer region by sequences derived from the MESV LTR results in the activation of the Mo-MuLV LTR in ES cells. The enhancer regions of MESV and Mo-MuLV differ by seven point mutations. Of these, a single point mutation at position -166 is sufficient to activate the Mo-MuLV LTR and to confer enhancer-dependent expression to Mo-MuLV-derived retroviral vectors in ES cells. This point mutation creates a recognition site for a sequence-specific DNA-binding factor present in nuclear extracts of ES cells. This factor was found by functional assays to be the murine equivalent to human Sp1.  相似文献   

2.
3.
The regulatory DNA (enhancer) of polyomavirus (Py) is a major determinant of tissue-specific DNA replication during acute infection of newborn mice. Previously, we reported that the combination of one of the two Py enhancers (A enhancer) and the repeated Moloney murine leukemia virus (Mo-MuLV) enhancer gave a chimeric Py genome (Py-MuLV) that replicates predominantly in the acinar cells of the pancreas, a tissue not permissive for wild-type PyA2 replication (R. Rochford, B. A. Campbell, and L. P. Villareal. Proc. Nat. Acad. Sci. USA 84:449-453,1987). In this report, we further examine the combined enhancer requirements for acinar cell-specific Py replication. We also compare enhancer requirements for Py replication in the acinar cells of the pancreas with those of a transformed acinar cell line (266-6 cells). The deletion of sequences within the A enhancer of Py-MuLV (nucleotides 5098 to 5132) results in a virus with 10-fold-reduced levels of pancreas-specific replication. The deletion, however, of one of the 72-bp repeated Mo-MuLV enhancer sequences from Py-MuLV results in a complete loss of pancreas-specific DNA replication. Thus, the Py A enhancer is required for efficient replication of Py in the pancreas without otherwise altering organ specificity, but both of the repeated copies of the Mo-MuLV enhancer are essential for pancreas-specific Py replication. In contrast to the enhancer requirements for in vivo pancreas replication, in transformed acinar cells (266-6), PyA2 wild-type replicated efficiently and the Py-MuLV recombinant replicated inefficiently. These data suggest that the cell-specific control of DNA replication is different between normal pancreas cells and their transformed cell line counterparts and that this difference is apparent in the enhancer requirement of cell-specific Py DNA replication.  相似文献   

4.
The myeloproliferative sarcoma virus (MPSV) was derived by passage of Moloney sarcoma virus (Mo-MuSV) in adult mice. Mo-MuSV variants transform fibroblasts. However, MPSV also affects erythroid, myeloid, and hematopoietic stem cells. The MPSV proviral genome, two temperature-sensitive mutants derived from it, Mo-MuSV variant M1, and Moloney murine leukemia virus (Mo-MuLV) were compared by heteroduplex mapping. MPSV wild type was found to have 1 kilobase pair deleted from the pol gene and to contain v-mos-related sequences. The 3' end of MPSV, including the oncogene-helper junctions, the v-mos gene, and the 3' long terminal repeat, was sequenced and compared with sequences of Mo-MuLV, MSV-124, and the mouse oncogene c-mos. From these data, MPSV appears to be either closely related to the original Mo-MuSV or an independent recombinant of Mo-MuLV and c-mos. Five possible explanations of the altered specificity of MPSV are considered. (i) The MPSV mos protein has properties inherent in c-mos but lost by other Mo-MuSV mos proteins. (ii) The MPSV mos protein has altered characteristics due to amino acid changes. (iii) Due to a frameshift, MPSV codes for a mos protein truncated at the amino terminal and also a novel peptide. (iv) A second novel peptide may be encoded from the 3' env region. (v) MPSV has long terminal repeats and an enhancer sequence more like Mo-MuLV than Mo-MuSV, with a consequently altered target cell specificity.  相似文献   

5.
6.
7.
We have molecularly cloned a feline leukemia virus (FeLV) (clone 33) from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV proviruses from other cats with AML, contains an unusual structure in its U3 region upstream of the enhancer (URE) consisting of three tandem direct repeats of 47 bp. To test the disease potential and specificity of this unique FeLV LTR, we replaced the U3 region of the LTR of the erythroleukemia-inducing Friend murine leukemia virus (F-MuLV) with that of FeLV clone 33. When the resulting virus, F33V, was injected into newborn mice, almost all of the mice eventually developed hematopoietic malignancies, with a significant percentage being in the myeloid lineage. This is in contrast to mice injected with an F-MuLV recombinant containing the U3 region of another FeLV that lacks repetitive URE sequences, none of which developed myeloid malignancies. Examination of tumor proviruses from F33V-infected mice failed to detect any changes in FeLV U3 sequences other than that in the URE. Like F-MuLV-infected mice, those infected with the F-MuLV/FeLV recombinants were able to generate and replicate mink cell focus-inducing viruses. Our studies are consistent with the idea that the presence of repetitive sequences upstream of the enhancer in the LTR of FeLV may favor the activation of this promoter in myeloid cells and contribute to the development of malignancies in this hematopoietic lineage.  相似文献   

8.
Wolff L  Koller R  Hu X  Anver MR 《Journal of virology》2003,77(8):4965-4971
Retroviruses can be used to accelerate hematopoietic cancers predisposed to neoplastic disease by prior genetic manipulations such as in transgenic or knockout mice. The virus imparts a second neoplastic "hit," providing evidence that the initial hit is transforming. In the present study, a unique retrovirus was developed that can induce a high incidence of myeloid disease and has a broad host range. This agent is a Moloney murine leukemia virus (Mo-MuLV)-based virus that has most of the U3 region of the long terminal repeat (LTR) replaced with that of retrovirus 4070A. Like Mo-MuLV, this virus, called MOL4070LTR, is NB-tropic and not restricted by Fv1 allelles. MOL4070LTR causes myeloid leukemias in ca. 50% of mice, a finding in contrast to Mo-MuLV, which induces almost exclusively lymphoid disease. The data suggest that the LTR of the 4070A virus expands the tissue tropism of the disease to the myeloid lineage. Interesting, MCF recombinant envelope was expressed in the lymphoid but not the myeloid neoplasms of BALB/c mice. This retrovirus has the potential for accelerating myeloid disease in genetically engineered mice.  相似文献   

9.
The ecotropic murine leukemia virus (E-MuLV) receptor expressed on Mus dunni tail fibroblast (MDTF) cells is a receptor for all E-MuLVs with the notable of Moloney murine leukemia virus (Mo-MuLV). Substitution of isoleucine for valine at position 214 in the third extracellular region (the putative E-MuLV binding site) of the MDTF receptor molecule allows this molecule to function as a Mo-MuLV receptor (M.V. Eiden, K. Farrell, J. Warsowe, L. A. Mahan, and C. A. Wilson, J. Virol. 67:4056-4061, 1993). We have now determined that treating MDTF cells with tunicamycin, an inhibitor of N-linked glycosylation, also renders them susceptible to Mo-MuLV infection. Two potential N-linked glycosylation sites are present in the third extracellular regions of both the NIH 3T3 and MDTF ecotropic receptors. The glycosylation site at position 229 of the MDTF receptor cDNA was eliminated by substituting a threonine codon for the asparagine codon. Mo-MuLV-resistant human HOS cells, expressing this form of the receptor, are susceptible to Mo-MuLV infection. Thus, our studies suggest that without a glycan moiety at position 229, the valine residue at 214 is no longer restrictive for Mo-MuLV infection. BHK-21 and CHO K1 hamster cells also express glycosylation-inactivated forms of the ecotropic receptor. Sequence analysis of these receptors together with our analysis of MDTF receptor function suggests that a single asparagine-linked glycosylation site is responsible for glycosylation inactivation of these receptors.  相似文献   

10.
11.
We have compared the level of expression of several enhancer/promoters in human lymphoblastoid Namalwa KJM-1 cells when fused to a common reporter gene. A cassette containing the pro-urokinase (pro-UK) coding sequence followed by the rabbit -globin and simian virus 40 (SV40) 3 nontranslated region was used for evaluation of the enhancer activity. Cells containing Moloney murine leukemia virus (Mo-MuLV) promoter had an average of 10–20 fold higher expression levels of pro-UK than those containing other promoters, such as SV40 early gene promoter, human cytomegalovirus (hCMV) major immediate-early gene promoter, Rous sarcoma virus (RSV) promoter and chicken -actin gene promoter. The expression level of pro-UK under the control of Mo-MuLV promoter was 2–3 g/106 cells/day and was constant for more than 6 months. Furthermore, the production of a high producer clone, obtained by using dhfr gene coamplification, reached 30–40 g/106 cells/day. Thus, Mo-MuLV promoter showed the desired characteristics for efficient expression of foreign genes in Namalwa KJM-1 cells.Abbreviations dhfr dihydrofolate reductase - G-CSF granulocyte colony-stimulating factor - hCMV human cytomegalovirus - LTR long terminal repeat - Mo-MuLV Moloney murine leukemia virus - MTX methotrexate - pro-UK pro-urokinase - RSV Rous sarcoma virus - SV40 simian virus 40 - T3 triiodo-thyronine - TRE thyroid-hormone responsive element  相似文献   

12.
13.
C A Wilson  J W Marsh    M V Eiden 《Journal of virology》1992,66(12):7262-7269
Moloney murine leukemia virus (Mo-MuLV) has the unique ability to infect different cells via either a low-pH-dependent or a pH-independent entry pathway. Only the pH-independent mechanism of Mo-MuLV entry has been associated with Mo-MuLV-induced syncytium formation. We have now identified a transformed cell line (NIH 3T3/DTras) which efficiently forms syncytia when exposed to Mo-MuLV, yet is low pH dependent for Mo-MuLV entry. Treatment of NIH 3T3/DTras cells with chloroquine, an agent which raises endosomal pH, blocks Mo-MuLV entry, but not Mo-MuLV-induced syncytium formation. This demonstrates that fusion which accompanies viral entry and fusion which is responsible for syncytium formation occur as independent processes in these cells. In addition, we determined that neither inherent differences in the Mo-MuLV receptor nor reduced affinity for Mo-MuLV gp70 can account for resistance of NIH 3T3 cells to Mo-MuLV-induced syncytium formation.  相似文献   

14.
The site of recombination of a mink cell focus-inducing strain (Mo-MuLV83) derived from an ecotropic Moloney murine leukemia virus (Mo-MuLV) was mapped by fingerprint analysis of the large RNase T1-resistant oligonucleotides, employing a two-dimensional gel electrophoresis method. Mo-MuLV83, in contrast to the ecotropic Mo-MuLV, demonstrated a broadened host range, i.e., growth not only on mouse cells but also on mink cells, and recombination involved the env gene function. The genomic RNA of these two viruses shared 42 out of a total of 51 to 53 large T1 oligonucleotides (81%) and possessed a similar subunit size of 36S. Most of these T1 oligonucleotides were mapped in their relative order to the 3' polyadenylic acid end of the viral RNA molecules. There were 10 common oligonucleotides immediately next to the 3' termini. A cluster of 7 (in Mo-MuLV83) or 10 (in Mo-MuLV) unique T1 oligonucleotides were mapped next to the common sequences at the 3' end, and they all appeared concomitantly in a polyadenylic acid-containing RNA fraction with a sedimentation coefficient slightly larger than 18S. Therefore, the env gene of Mo-MuLV was situated at a location approximately 2,000 to 4,000 nucleotides from the 3' end of the genomic RNA, and the gene order of Mo-MuLV appeared to be similar to that of the more rigorously determined avian oncornaviruses. cDNA(SFFV) specific for the xenotropic sequences in the spleen focus-forming virus RNA hybridized to the cluster of unique oligonucleotides of Mo-MuLV83 RNA. This suggests that the loci of recombination involve the homologous env gene region of a xenotropic virus.  相似文献   

15.
The oncogenic potential of many nonacute retroviruses is dependent on the duplication of the enhancer sequences present in the unique 3′ (U3) region of the long terminal repeat (LTR). In a molecular clone (MCF 247-W) of the murine leukemia virus MCF 247, a leukemogenic mink cell focus-inducing (MCF) virus, the U3 enhancer sequences are tandemly repeated in the LTR. We mutated the enhancer region of MCF 247-W to test the hypothesis that the duplicated enhancer sequences of this virus have a sequence-specific and/or a stereospecific role in enhancer function required for transformation. In one virus, we inserted 14 nucleotide bp into the novel sequence generated at the junction of the two enhancers to generate an MCF virus with an interrupted enhancer region. In the second virus, only one copy of the enhancer sequences was present. This second virus also lacked the junction sequence present between the two enhancers of MCF 247-W. Both viruses were less leukemogenic and had a longer mean latency period than MCF 247-W. These data indicate that the sequence generated at the junction of the two enhancers and/or the stereospecific arrangement of the two enhancer elements are required for the full oncogenic potential of MCF 247-W. We analyzed proviral LTRs within the c-myc locus in tumor DNAs from mice injected with the MCF virus with the interrupted enhancer region. Some of the proviral LTRs integrated upstream of c-myc contain enhancer regions that are larger than those of the injected virus. These results are consistent with the suggestion that the virus with an interrupted enhancer changes in vivo to perform its role in the transformation of T cells.  相似文献   

16.
Among Moloney murine leukemia viruses (Mo-MuLVs) having stop codons other than UAG at the gag-pol junction, Mo-MuLV with UAA, but not with UGA, had a replication disadvantage. Mo-MuLV with a glutamine codon (CAG) at the junction did not replicate. A revertant of this virus consisted of the original virus and a virus with a deletion of the pol region. Protease and Pr65gag encoded by their respective genomes complemented each other.  相似文献   

17.
Q X Li  H Fan 《Journal of virology》1991,65(8):4442-4448
We previously described a preleukemic state induced by Moloney murine leukemia virus (Mo-MuLV) characterized by hematopoietic hyperplasia in the spleen. Further experiments suggested that splenic hyperplasia results from inhibitory effects in the bone marrow, leading to compensatory extramedullary hematopoiesis. An enhancer variant of Mo-MuLV, Mo + PyF101 Mo-MuLV, fails to induce preleukemic hyperplasia and has greatly reduced leukemogenicity, indicating the importance of this state to efficient leukemogenesis. An alternative method for induction of preleukemic hyperplasia was sought. Treatment of mice with 89Sr causes specific ablation of bone marrow hematopoiesis and compensatory extramedullary hematopoiesis in spleen and nodes. NIH Swiss mice were inoculated neonatally with Mo + PyF101 Mo-MuLV and treated with 89Sr at 6 weeks of age. Approximately 85% developed lymphoid leukemia with a time course resembling that caused by wild-type Mo-MuLV. In contrast, very few animals treated with Mo + PyF101 Mo-MuLV or 89Sr alone developed disease. In approximately one-third of cases, the Mo + PyF101 Mo-MuLV proviruses were found at common sites for wild-type Mo-MuLV-induced tumors (c-myc, pvt-1, and pim-1), indicating that this virus is capable of performing insertional activation in T-lymphoid cells. These results support the proposal that splenic hyperplasia results from inhibitory effects in the bone marrow. They also indicate that Mo + PyF101 Mo-MuLV is blocked in early and not late events in leukemogenesis.  相似文献   

18.
We constructed a chimeric human T-cell lymphotropic virus type 1 (HTLV-1) provirus in which the original envelope precursor sequence was replaced by that of ecotropic Moloney murine leukemia virus (Mo-MuLV). Chimeric particles produced by transient transfection of this chimeric provirus were infectious for murine cells, such as NIH 3T3 fibroblasts, lymphoid EL4 cells, and primary CD4(+) T lymphocytes, whereas HTLV-1 particles were not. The infectivity of chimeric particles increased 10 times when the R peptide located at the carboxy terminus of the MuLV envelope glycoprotein was deleted. Primary murine CD4(+) T lymphocytes, infected by the Delta R chimeric virus, released particles that could spread the infection to other naive murine lymphoid cells. This chimeric virus, with the Mo-MuLV envelope glycoprotein and the replication characteristics of HTLV-1, should be useful in studying the pathogenesis of HTLV-1 in a mouse model.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号