首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150–160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps.  相似文献   

2.
In photosynthesis in chloroplasts and cyanobacteria, redox control of thylakoid protein phosphorylation regulates distribution of absorbed excitation energy between the two photosystems. When electron transfer through chloroplast photosystem II (PSII) proceeds at a rate higher than that through photosystem I (PSI), chemical reduction of a redox sensor activates a thylakoid protein kinase that catalyses phosphorylation of light-harvesting complex II (LHCII). Phosphorylation of LHCII increases its affinity for PSI and thus redistributes light-harvesting chlorophyll to PSI at the expense of PSII. This short-term redox signalling pathway acts by means of reversible, post-translational modification of pre-existing proteins. A long-term equalisation of the rates of light utilisation by PSI and PSII also occurs: by means of adjustment of the stoichiometry of PSI and PSII. It is likely that the same redox sensor controls both state transitions and photosystem stoichiometry. A specific mechanism for integration of these short- and long-term adaptations is proposed. Recent evidence shows that phosphorylation of LHCII causes a change in its 3-D structure, which implies that the mechanism of state transitions in chloroplasts involves control of recognition of PSI and PSII by LHCII. The distribution of LHCII between PSII and PSI is therefore determined by the higher relative affinity of phospho-LHCII for PSI, with lateral movement of the two forms of the LHCII being simply a result of their diffusion within the membrane plane. Phosphorylation-induced dissociation of LHCII trimers may induce lateral movement of monomeric phospho-LHCII, which binds preferentially to PSI. After dephosphorylation, monomeric, unphosphorylated LHCII may trimerize at the periphery of PSII.  相似文献   

3.
Chloroplasts are central to the provision of energy for green plants. Their photosynthetic membrane consists of two major complexes converting sunlight: photosystem I (PSI) and photosystem II (PSII). The energy flow toward both photosystems is regulated by light-harvesting complex II (LHCII), which after phosphorylation can move from PSII to PSI in the so-called state 1 to state 2 transition and can move back to PSII after dephosphorylation. To investigate the changes of PSI and PSII during state transitions, we studied the structures and frequencies of all major membrane complexes from Arabidopsis thaliana chloroplasts at conditions favoring either state 1 or state 2. We solubilized thylakoid membranes with digitonin and analyzed the complete set of complexes immediately after solubilization by electron microscopy and image analysis. Classification indicated the presence of a PSI-LHCII supercomplex consisting of one PSI-LHCI complex and one LHCII trimer, which was more abundant in state 2 conditions. The presence of LHCII was confirmed by excitation spectra of the PSI emission of membranes in state 1 or state 2. The PSI-LHCII complex could be averaged with a resolution of 16 A, showing that LHCII has a specific binding site at the PSI-A, -H, -L, and -K subunits.  相似文献   

4.
In this work we study the effect of UV-A radiation on the function of the photosynthetic apparatus in thylakoid membranes with different organization of the light-harvesting complex II–photosystem II (LHCII–PSII) supercomplex. Leaves and isolated thylakoid membranes from a number of previously characterized pea species with different LHCII size and organization were subjected to UV-A treatment. A relationship was found between the molecular organization of the LHCII (ratio of the oligomeric to monomeric forms of LHCII) and UV-A-induced changes both in the energy transfer from PSII to PSI and between the chlorophyll–protein complexes within the LHCII–PSII supercomplex. Dependence on the organization of the LHCII was also found with regard to the degree of inhibition of the photosynthetic oxygen evolution. The susceptibility of energy transfer and oxygen evolution to UV-A radiation decreased with increasing LHCII oligomerization when the UV-A treatment was performed on isolated thylakoid membranes, in contrast to the effect observed in thylakoid membranes isolated from pre-irradiated pea leaves. The data suggest that UV-A radiation leads mainly to damage of the PSIIα centers. Comparison of membranes with different organization of their LHCII–PSII supercomplex shows that the oligomeric forms of LHCII play a key role for sensitivity to UV-A radiation of the photosynthetic apparatus. S. G. Taneva is Associated member of the Institute of Biophysics, Bulgarian Academy of Sciences.  相似文献   

5.
The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained by a short treatment of thylakoid membranes with the mild detergent n-dodecyl-alpha, d-maltoside and are thought to reflect the grana membranes in a native state. The membranes frequently show crystalline macrodomains in which PSII is organized in rows spaced by either 26.3 nm (large-spaced crystals) or 23 nm (small-spaced crystals). The small-spaced crystals are less common but better ordered. Image analysis of the crystals by an aperiodic approach revealed the precise positions of the core parts of PSII in the lattices, as well as features of the peripheral light-harvesting antenna. Together, they indicate that the so-called C(2)S(2) and C(2)S(2)M supercomplexes form the basic motifs of the small-spaced and large-spaced crystals, respectively. An analysis of a pair of membranes with a well-ordered large-spaced crystal reveals that many PSII complexes in one layer face only light-harvesting complexes (LHCII) in the other layer. The implications of this type of organization for the efficient transfer of excitation energy from LHCII to PSII and for the stacking of grana membranes are discussed.  相似文献   

6.
Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.  相似文献   

7.
Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.  相似文献   

8.
To survive fluctuations in quality and intensity of light, plants and algae are able to preferentially direct the absorption of light energy to either one of the two photosystems, PSI or PSII. This rapid process is referred to as a state transition and has been correlated with the phosphorylation and migration of the light-harvesting complex protein (LHCP) between PSII and PSI. We show here that thylakoid protein kinases (TAKs) are required for state transitions in Arabidopsis. Antisense TAK1 expression leads to a loss of LHCP phosphorylation and a reduction in state transitions. Preferential activation of PSII causes LHCP to accumulate with PSI, and TAK1 mutants disrupt this process. Finally, TAKs also influence the phosphorylation of multiple thylakoid proteins.  相似文献   

9.
The localization of the plant-specific thylakoid-soluble phosphoprotein of 9 kDa, TSP9, within the chloroplast thylakoid membrane of spinach has been established by the combined use of fractionation, immunoblotting, cross-linking, and mass spectrometry. TSP9 was found to be exclusively confined to the thylakoid membranes, where it is enriched in the stacked grana membrane domains. After mild solubilization of the membranes, TSP9 migrated together with the major light-harvesting antenna (LHCII) of photosystem II (PSII) and with PSII-LHCII supercomplexes upon separation of the protein complexes by either native gel electrophoresis or sucrose gradient centrifugation. Studies with a cleavable cross-linking agent revealed the interaction of TSP9 with both major and minor LHCII proteins as identified by mass spectrometric sequencing. Cross-linked complexes that in addition to TSP9 contain the peripheral PSII subunits CP29, CP26, and PsbS, which form the interface between LHCII and the PSII core, were found. Our observations also clearly suggest an interaction of TSP9 with photosystem I (PSI) as shown by both immunodetection and mass spectrometry. Sequencing identified the peripheral PSI subunits PsaL, PsaF, and PsaE, originating from cross-linked protein complexes of around 30 kDa that also contained TSP9. The distribution of TSP9 among the cross-linked forms was found to be sensitive to conditions such as light exposure. An association of TSP9 with LHCII as well as the peripheries of the photosystems suggests its involvement in regulation of photosynthetic light harvesting.  相似文献   

10.
Light and temperature affect state transitions through changes in the plastoquinone (PQ) redox state in photosynthetic organisms. We demonstrated that light and/or heat treatment induced preferential photosystem (PS) I excitation by binding light-harvesting complex II (LHCII) proteins. The photosystem of wheat was in state 1 after dark overnight treatment, wherein PQ was oxidized and most of LHCII was not bound to PSI. At the onset of the light treatment [25 °C in the light (100 µmol photons m?2 s?1)], two major LHCIIs, Lhcb1 and Lhcb2 were phosphorylated, and the PSI–LHCII supercomplex formed within 5 min, which coincided with an increase in the PQ oxidation rate. Heat treatment at 40 °C of light-adapted wheat led to further LHCII protein phosphorylation of, resultant cyclic electron flow promotion, which was accompanied by ultrafast excitation of PSI and structural changes of thylakoid membranes, thereby protecting PSII from heat damage. These results suggest that LHCIIs are required for the functionality of wheat plant PSI, as it keeps PQ oxidized by regulating photochemical electron flow, thereby helping acclimation to environmental changes.  相似文献   

11.
Land plants live in a challenging environment dominated by unpredictable changes. A particular problem is fluctuation in sunlight intensity that can cause irreversible damage of components of the photosynthetic apparatus in thylakoid membranes under high light conditions. Although a battery of photoprotective mechanisms minimize damage, photoinhibition of the photosystem II (PSII) complex occurs. Plants have evolved a multi-step PSII repair cycle that allows efficient recovery from photooxidative PSII damage. An important feature of the repair cycle is its subcompartmentalization to stacked grana thylakoids and unstacked thylakoid regions. Thus, understanding the crosstalk between stacked and unstacked thylakoid membranes is essential to understand the PSII repair cycle. This review summarizes recent progress in our understanding of high-light-induced structural changes of the thylakoid membrane system and correlates these changes to the efficiency of the PSII repair cycle. The role of reversible protein phosphorylation for structural alterations is discussed. It turns out that dynamic changes in thylakoid membrane architecture triggered by high light exposure are central for efficient repair of PSII.  相似文献   

12.
Light drives photosynthesis. In plants it is absorbed by light-harvesting antenna complexes associated with Photosystem I (PSI) and photosystem II (PSII). As PSI and PSII work in series, it is important that the excitation pressure on the two photosystems is balanced. When plants are exposed to illumination that overexcites PSII, a special pool of the major light-harvesting complex LHCII is phosphorylated and moves from PSII to PSI (state 2). If instead PSI is over-excited the LHCII complex is dephosphorylated and moves back to PSII (state 1). Recent findings have suggested that LHCII might also transfer energy to PSI in state 1. In this work we used a combination of biochemistry and (time-resolved) fluorescence spectroscopy to investigate the PSI antenna size in state 1 and state 2 for Arabidopsis thaliana. Our data shows that 0.7 ± 0.1 unphosphorylated LHCII trimers per PSI are present in the stroma lamellae of state-1 plants. Upon transition to state 2 the antenna size of PSI in the stroma membrane increases with phosphorylated LHCIIs to a total of 1.2 ± 0.1 LHCII trimers per PSI. Both phosphorylated and unphosphorylated LHCII function as highly efficient PSI antenna.  相似文献   

13.
植物光合机构的状态转换   总被引:9,自引:0,他引:9  
植物光合机构的状态转换是一种通过光系统Ⅱ的捕光天线色素蛋白复合体(LHCⅡ)的可逆磷酸化调节激发能在两个光系统间的分配来适应环境中光质等短期变化的机制.一般植物光合机构的LHCⅡ磷酸化主要受电子递体质醌和细胞色素b6f复合体氧化还原状态的调节,从而影响其在两种光系统间的移动。植物光合机构的状态转换也可以通过两种光系统相互接近导致激发能满溢来平衡两个光系统的激发能分配。外界离子浓度骤变可以引起盐藻LHCⅡ磷酸化,其调节过程与电子递体的氧化还原状态无关。绿藻的状态转换可以调节细胞内的ATP供求关系。  相似文献   

14.
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.  相似文献   

15.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

16.
In photosynthetic cells of higher plants and algae, the distribution of light energy between photosystem I and photosystem II is controlled by light quality through a process called state transition. It involves a reorganization of the light-harvesting complex of photosystem II (LHCII) within the thylakoid membrane whereby light energy captured preferentially by photosystem II is redirected toward photosystem I or vice versa. State transition is correlated with the reversible phosphorylation of several LHCII proteins and requires the presence of functional cytochrome b(6)f complex. Most factors controlling state transition are still not identified. Here we describe the isolation of photoautotrophic mutants of the unicellular alga Chlamydomonas reinhardtii, which are deficient in state transition. Mutant stt7 is unable to undergo state transition and remains blocked in state I as assayed by fluorescence and photoacoustic measurements. Immunocytochemical studies indicate that the distribution of LHCII and of the cytochrome b(6)f complex between appressed and nonappressed thylakoid membranes does not change significantly during state transition in stt7, in contrast to the wild type. This mutant displays the same deficiency in LHCII phosphorylation as observed for mutants deficient in cytochrome b(6)f complex that are known to be unable to undergo state transition. The stt7 mutant grows photoautotrophically, although at a slower rate than wild type, and does not appear to be more sensitive to photoinactivation than the wild-type strain. Mutant stt3-4b is partially deficient in state transition but is still able to phosphorylate LHCII. Potential factors affected in these mutant strains and the function of state transition in C. reinhardtii are discussed.  相似文献   

17.
In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment–pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while “psi-type” CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an organization, leading to the discovery of a novel crystalline structure in macroaggregates of LHCII.  相似文献   

18.
Mobile light-harvesting complex II (LHCII) is implicated in the regulation of excitation energy distribution between Photosystem I (PSI) and Photosystem II (PSII) during state transitions. To investigate how LHCII interacts with PSI during state transitions, PSI was isolated from Arabidopsis thaliana plants treated with PSII or PSI light. The PSI preparations were made using digitonin. Chemical cross-linking using dithio-bis(succinimidylpropionate) followed by diagonal electrophoresis and immunoblotting showed that the docking site of LHCII (Lhcb1) on PSI is comprised of the PSI-H, -L, and -I subunits. This was confirmed by the lack of energy transfer from LHCII to PSI in the digitonin-PSI isolated from plants lacking PSI-H and -L. Digitonin-PSI was purified further to obtain an LHCII.PSI complex, and two to three times more LHCII was associated with PSI in the wild type in State 2 than in State 1. Lhcb1 was also associated with PSI from plants lacking PSI-K, but PSI from PSI-H, -L, or -O mutants contained only about 30% of Lhcb1 compared with the wild type. Surprisingly, a significant fraction of the LHCII bound to PSI in State 2 was not phosphorylated. Cross-linking prior to sucrose gradient purification resulted in copurification of phosphorylated LHCII in the wild type, but not with PSI from the PSI-H, -L, and -O mutants. The data suggest that migration of LHCII during state transitions cannot be explained sufficiently by different affinity of phosphorylated and unphosphorylated LHCII for PSI but is likely to involve structural changes in thylakoid organization.  相似文献   

19.
Solubilisation of thylakoid membranes from young leaves of Pisum sativum in the presence of Triton X-100 resulted in an almost complete loss of quenching of light-harvesting chlorophyll-protein (LHCP) fluorescence, as measured at 77°K. There were concomitant changes in the kinetics of light-saturation curves of electron transport from 2,6-dichlorophenolindophenol/ascorbate to methyl viologen. These effects were accompenied by a physical dissociation of LHCP polypeptides from photosystem I (PSI) and photosystem II (PSII) polypeptides, as determined by polyacrylamide gel-electrophoresis. Detergent-dialysis in the presence of exogenous purified galactolipids, about 80% of which were linoleoyl molecular species, only partially reversed these effects. However, detergent-dialysis using the phospholipids, phosphatidylglycerol and phosphatidylcholine, resulted in the substantial restoration of 77°K fluorescence quenching and the restoration of both emission spectra and electron transport kinetics of both Photosystems I and II that were typical of native membranes.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenolindophenol - DGD digalactosyldiacylglycerol - LHCP light-harvesting chlorophyll-protein - MGD monogalactosyldiacylglycerol - PCi phosphatidylcholine — Sigma grade NS - PCii -oleoyl, -palmitoyl phosphalidylcholine - PG phosphatidylglycerol - PSI photosystem I - PSII photosystem II  相似文献   

20.
White RA  Hoober JK 《Plant physiology》1994,106(2):583-590
Initiation of thylakoid membrane assembly was examined in degreened cells of Chlamydomonas reinhardtii y1 cells depleted of thylakoid membranes and photosynthetic activity by growth in the dark for 3 to 4 d. Photoreductive activities of photosystem II (PSII) and photosystem I (PSI) increased with no apparent lag when degreened cells were exposed to light at 38[deg]C. However, fluorescence transients induced by actinic light, which reflect the functional state of PSII, changed only slightly during the first 2 h of greening. When these cells were treated with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) or saturating light, fluorescence increased commensurate with the cellular content of chlorophyll. In similar experiments with greening cells of C. reinhardtii CC-2341 (ac-u-g-2.3), a PSI-minus strain, fluorescence increased with chlorophyll without treatment with DCMU. These data suggested that fluorescence of initial PSII centers in greening y1 cells was quenched by activity of PSI. Continuous monitoring of fluorescence in the presence or absence of DCMU showed that assembly of quenched PSII centers occurred within seconds after exposure of y1 cells to light. These results are consistent with initial assembly of PSI and PSII within localized domains, where their proximity allows efficient energy coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号