首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Purine nucleotide biosynthesis was studied in culture forms of Trypanosoma cruzi strain Y, Crithidia deanei (a reduviid trypanosomatid with an endosymbiote) and an aposymbiotic strain of C. deanei (obtained by curing C. deanei with chloramphenicol). Trypanosoma cruzi was found to synthesize purine nucleotides only fring incorporated into both adenine and guanine nucleotides. Similar results were obtained with guanine, indicating that this flagellate has a system for the interconversion of purine nucleotides. Crithidia deanei was able to synthesize purine and pyrimidine nucleotides from glycine ("de novo" pathway) and purine nucleotides from adenine and guanine ("salvage" pathway). Adenine was incorporated into both adenine and guanine nucleotides, while guanine was incorporated into guanine nucleotides only, indicating the presence of a metabolic block at the level of GMP reductase. The aposymbiotic C. deanei strain was unable to utilize glycine for the synthesis of purine nucleotides, although glycine was utilized for synthesizing pyrimidine nucleotides. These results suggest that the endosymbiote is implicated in the de novo purine nucleotide pathway of the C. deanei-endosymbiote complex. The incorporation of adenine and guanine by aposymbiotic C. deanei strain followed a pattern similar to that observed for C. deanei.  相似文献   

2.
SYNOPSIS. Chloramphenicol cured Crithidia deanei of its endosymbiote. The derived aposymbiotic strain had additional growth requirements: purin (as adenine), heme, arginine, histidine, isoleucine, leucine, phenylalanine, threonine, tryptophan, valine, pyridoxine, riboflavin, and pantothenate and liver infusion (replaceable by high nicotinamide).  相似文献   

3.
SYNOPSIS The ethanolic phosphotungstic acid (PTA) technic was used to detect, at the fine-structural level, basic proteins in various developmental stages of pathogenic Trypanosoma cruzi, and nonpathogenic Herpetomonas samuelpessoai, Leptomonas samueli, and Crithidia deanei, trypanosomatids. Reactions were observed in the nucleus of all stages. In the kinetoplast of epimastigote and promastigote forms reactions were noted mainly at the periphery. In trypomastigotes and choanomastigotes forms, however, an intense reaction was observed throughout the kinetoplast. Reactions were present in cytoplasmic vesicles related to protein storage in T. cruzi and in membrane-bounded peroxisome-like organelles of H. samuelpessoai, L. samueli and C. deanei. The network of filaments which forms the paraxial rod did not react. In the flagellum, reaction was noted only at the peripheral doublet microtubules. PTA reacts also with structures related to the junction between the flagellar and cell body membranes.  相似文献   

4.
SYNOPSIS Blastocrithidia culicis, Crithidia deanei, Crithidia fasciculata, Herpetomonas samuelpessoai, Leptomonas seymouri and Leishmania tarentolae grown in cultures were compared by electrophoretic mobility for isoenzymes in 6 enzymes. All species were found distinct in these characteristics. Endosymbiotic C. deanei, which was identical to the aposymbiotic C. deanei in 5 enzymes, had an extra band in aspartate aminotransferase. No differences in isoenzymes were found between members of one species maintained in 2 different culture media.  相似文献   

5.
Crithidia deanei from the reduviid hemipteron, Zelus leucogrammus, unlike most lower trypanosomatids cultivated in defined medium, required only 2 amino acids, methionine and tyrosine; only 4 vitamins, folic acid, thiamine, biotin, and nicotinamide; and neither hemin nor a purine source. Electron microscopy reveals an endosymbiont, probably bacterial, which presumably provides the other basic trypanosomatid essential nutrients.  相似文献   

6.
Crithidia deanei is an insect trypanosomatid that harbors a bacterial endosymbiont in its cytoplasm. In this work, we have demonstrated the influence of the endosymbiont on the interaction of C. deanei with mammalian fibroblasts, also implicating the surface leishmanolysin-like molecules of C. deanei in this process. The wild strain of C. deanei expressed a higher amount (2-fold) of leishmanolysin-like molecules in the parasite surface than the aposymbiotic strain. The treatment of parasites with anti-leishmanolysin antibodies or the fibroblasts with purified leishmanolysin-like molecules from C. deanei significantly reduced the association index. The aposymbiotic strain of C. deanei presented interaction rates about 2- and 3-fold lower with fibroblasts than the endosymbiont-bearing counterpart after 1 and 2 h, respectively. However, the association indexes were similar after 3 and 4 h of interaction. Additionally, we observed a 2-fold increase in the association index after 24-96 h of parasite-fibroblast interaction when compared to the interaction process performed for 4 h, irrespective to the presence of the endosymbiont, suggesting that fibroblasts support multiplication and survival of C. deanei. Both parasite strains were able to induce fibroblast lysis. Interestingly, the wild strain led to a 2-fold increase in fibroblasts death in comparison to the aposymbiotic strain after 48-96 h. We also showed that both wild and aposymbiotic biotinylated live parasites recognized the same receptor in the fibroblast cells.  相似文献   

7.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

8.
A study has been made of the growth responses to purine and pyrimidine metabolites shown by sixteen ultraviolet-induced adenine requiring mutants ofCandida albicans blocked at early stages in purine biosynthesis. The salient findings establish that, inC. albicans, (1) the pathway for the conversion of adenine to guanine is not reversible, (2) exogenous nucleotides are not utilized, and the purine and pyrimidine components of exogenous nucleosides must be converted to the free base form before utilization and (3) cytosine and guanine competitively inhibit different steps in the utilization of exogenous adenine.  相似文献   

9.
De Novo Purine Biosynthesis in Intact Cells of Cucurbita pepo   总被引:1,自引:1,他引:0       下载免费PDF全文
Lovatt CJ 《Plant physiology》1983,73(3):766-772
The capacity of intact cells of roots excised from summer squash plants (Cucurbita pepo L. cv Early Prolific Straightneck) to synthesize purine nucleotides de novo was investigated. Evidence that purine nucleotides are synthesized de novo included: (a) demonstration of the incorporation of [1-14C]glycine, [2-14C]glycine, NaH14CO3, and H14COONa into total adenine nucleotides; (b) observation that the addition of azaserine or aminopterin, known inhibitors of de novo purine synthesis in other organisms, blocked the incorporation of these precursors into adenine nucleotides; and (c) demonstration that the purine ring synthesized from these precursors was labeled in a manner consistent with the pathway for de novo purine biosynthesis found in microorganisms and animal tissues. Under optimal conditions, the activity of this pathway in roots excised from 2-day-old squash plants was 244 ± 13 nanomoles (mean ± standard error, n = 17) NaH14CO3 incorporated into ∑Ade (the sum of the adenine nucleotides, nucleoside and free base) per gram tissue during the 3-hour incubation period.

The possible occurrence of alternative enzymic reactions for the first steps of de novo purine biosynthesis was also investigated. No conclusive evidence was obtained to support the operation of alternative enzymic reactions in the intact cell of C. pepo.

  相似文献   

10.
Trypanosomatid protozoa (Crithidia deanei, C. deanei aposymbiotic, C. oncopelti, C. fasciculata, C. acanthocephali, Leptomonas seymouri, L. collosoma, L. samueli, Herpetomonas samuelpessoai, H. sp., H. megaseliae, H. muscarum muscarum, Leishmania donovani, L. braziliensis, Trypanosoma cruzi, T. conorhini and T. mega) were examined for the presence of acetylornithinase (EC 3.5.1.16) and ornithine acetyltransferase (EC 2.3.1.35). As a rule, species of the genus Crithidia presented one of the two enzymes for the conversion of acetylornithine into ornithine. Crithidia fasciculata and C. acanthocephali presented acetylornithinase, while C. deanei and C. oncopelti, species harboring symbionts, presented ornithine acetyltransferase. The enzyme was absent in the aposymbiotic strain of C. deanei, which suggests that the enzyme belongs to the symbiont. Among the other trypanosomatids examined only Herpetomonas samuelpessoai presented acetylomithinase. The participation of acetylornithinase and ornithine acetyltransferase in the metabolism of trypanosomatids is discussed in the light of their nutritional requirements and possession of enzymes of the arginineornithine metabolism.  相似文献   

11.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

12.
The surface anionic groups of symbiote-bearing and symbiote-free strains of Crithidia deanei were compared by determining cellular electrophoretic mobility, by ultrastructural cytochemistry, and by identification of sialic acids by thin-layer and gasliquid chromatography. Symbiote-free Crithidia deanei has a highly negative surface charge (-0.9984 μm?s-1? V-1? cm), which is slightly reduced (-0.8527 μm?s-1? V-1? cm) by the presence of the endosymbiote. Treatment of both strains of C. deanei with neuraminidase decreased significantly the electrophoretic mobility of cells toward the cathodic pole, indicating the existence of exposed sialic acid residues responsible for the negative charge on the protozoan cell surface. Thin-layer and gas-liquid chromatography showed that N-glycolyl- and N-acetylneuraminic acids were present in both strains of C. deanei.  相似文献   

13.
In order to verify the applicability of biochemical methods for species identification of Trypanosomatidae, 13 species of monoxenic trypanosomatids plus the heteroxenous Trypanosoma cruzi were comparatively analyzed by three different biochemical methods. Insect trypanosomatids examined were: Crithidia acanthocephali, C. fasciculata (three varieties), C. luciliae luciliae, C. luciliae thermophila, C. deanei, C. oncopelti, Herpetomonas muscarum muscarum, H. megaseliae, H. samuelpessoai, H. mariadeanei, Leptomonas seymouri, L. collosoma, L. samueli, and Blastocrithidia culicis. Also included in the survey were aposymbiotic strains of C. deanei and C. oncopelti. Methods used were: electrophoretic profiling of endonuclease-generated fragments of k-DNA, esterase isoenzymes profiling, and polyacrylamide-gel electrophoresis (SDS-PAGE) of radioiodinated cell surface proteins. Interspecific but not intraspecific differences were detected by all three methods among the 13 monoxenic species examined. Thus, it is concluded that these methods can be successfully used, in addition to classical criteria, for species identification of insect trypanosomatids.  相似文献   

14.
Leishmania mexicana mexicana promastigotes, axenic amastigotes, and amastigotes derived from Vero cells were examined for de novo purine synthesis and mechanisms of purine salvage. Both promastigotes and axenic amastigotes were incapable of de novo purine synthesis, as shown by the lack of [14C]formate and [14C]glycine incorporation into purine nucleotide pools. However, the ready incorporation of [14C]hypoxanthine, [14C]adenine, and [14C]guanine suggested that purine salvage pathways were operating. In addition, a significant percentage (?60%) of the total label from these purine precursors was associated with adenylate nucleotides. Nucleotide pool levels of axenic amastigotes were consistently greater but the specific activities were less than those of promastigotes, suggesting a slower rate of purine metabolism in the axenic amastigote form. Similar results were obtained from amastigotes isolated from infected Vero cells.  相似文献   

15.
SYNOPSIS Eighty-four purine and pyrimidine analogs were evaluated for growth inhibition of Tetrahymena pyriformis. The most toxic were 2-fluoroadenine, 2-fluoroadenosine, 6-methylpurine, a series of 5-fluoropyrimidines, and a series of adenine derivatives substituted in the 9-position. 2-Fluoroadenine was metabolized to the ribonucleoside triphosphate and was incorporated into nucleic acids; its inhibition of growth was reversed by high levels of adenine. 6-Methylthiopurine ribonucleoside was phosphorylated, but only to the monophosphate derivative. Contrasting T. pyriformis with mammalian cells gave clues to the mechanism of action of some of the agents. 6-Mercaptopurine, 6-methylthiopurine ribonucleoside, and 6-thioguanine, all potent pseudofeedback inhibitors of de novo purine biosynthesis in mammalian cells, are not toxic to T. pyriformis, which lacks the de novo purine pathway; this implies that inhibition of de novo purine biosynthesis by them underlies their growth inhibition of mammalian cells.  相似文献   

16.
Purine metabolism in Toxoplasma gondii   总被引:11,自引:0,他引:11  
We have studied the incorporation and interconversion of purines into nucleotides by freshly isolated Toxoplasma gondii. They did not synthesize nucleotides from formate, glycine, or serine. The purine bases hypoxanthine, xanthine, guanine, and adenine were incorporated at 9.2, 6.2, 5.1, and 4.3 pmol/10(7) cells/h, respectively. The purine nucleosides adenosine, inosine, guanosine, and xanthosine were incorporated at 110, 9.0, 2.7, and 0.3 pmol/10(7) cells/h, respectively. Guanine, xanthine, and their respective nucleosides labeled only guanine nucleotides. Inosine, hypoxanthine, and adenine labeled both adenine and guanine nucleotide pools at nearly equal ratios. Adenosine kinase was greater than 10-fold more active than the next most active enzyme in vitro. This is consistent with the metabolic data in vivo. No other nucleoside kinase or phosphotransferase activities were found. Phosphorylase activities were detected for guanosine and inosine; no other cleavage activities were detected. Deaminases were found for adenine and guanine. Phosphoribosyltransferase activities were detected for all four purine nucleobases. Interconversion occurs only in the direction of adenine to guanine nucleotides.  相似文献   

17.
The metabolism of adenine and guanine, relating to the biosynthesis of caffeine, in excised shoot tips of tea was studied with micromolar amounts of adenine-[8-14C] or guanine-[8-14C]. Among the presumed precursors of caffeine biosynthesis, adenine was the most effective, whereas guanine was the least effective. After administration of a ‘pulse’ of adenine-[8-14C], almost all of the adenine-[14C] supplied disappeared by 30 hr, and 14C-labelled caffeine and RNA purine nucleotide (AMP and GMP) synthesis increased throughout the experimental period, whereas the radioactivities of free purine nucleotides, 7-methylxanthine and theobromine increased during the first 10 hr incubation period, followed by a steady decrease. By contrast, more than 45% of the guanine-[8-14C] supplied remained unchanged even after a 120 hr period. The main products of guanine-[8-14C] metabolism in tea shoot tips were guanine nucleotides, theobromine, caffeine and the GMP of RNA. The results support the hypothesis that the purine nucleotides are synthesized from adenine and guanine via the pathway of purine salvage. Adenylate is readily converted into other purine nucleotides, whereas the conversion rate of guanylate into other purine nucleotides is very low.The results also support the view that 7-methylxanthine and theobromine are precursors of caffeine. For the origin of the purine ring in caffeine, purine nucleotides in the nucleotide pool rather than in nucleic acids are suggested.  相似文献   

18.
SYNOPSIS. Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n. are described. Both flagellates can be grown in a defined medium over a temperature range of 15–37°C. The requirements for amino acids, vitamins, purine and hemin, and pH range were similar to those established for Crithidia fasciculata, although threonine was required as a growth factor for C. luciliae thermophila at high temperatures. Adenosine could be used by the 2 Crithidia as a purine source at 28 but not at 37 C.  相似文献   

19.
SYNOPSIS. Purine and pyrimidine biosynthesis in the avian malaria parasite Plasmodium lophurae and its host cell, the duck erythrocyte, were investigated in vitro. Pyrimidine synthesis, as measured by the incorporation of C14-NaHCO3 into cytosine, uracil and thymine was slight in uninfected duck erythrocytes, whereas infected erythrocytes and erythrocyte-free parasites had high rates of incorporation of NaHCO3 into these bases. In addition, orotidine-5′-monophosphate pyrophosphorylase and thymidylate synthetase, 2 enzymes of the pyrimidine biosynthetic pathway, were found in cell-free extracts of the plasmodia. Purine synthesis was measured by determining the extent of incorporation of C14-Na-formate into adenine and guanine. Uninfected and infected erythrocytes had similar rates of Na-formate incroporation into adenine. whereas free parasites incorporated little of this compound into adenine, or guanine. On the other hand, the incorporation of Na-formate into guanine was 54% higher in infected erythrocytes than in uninfected erythrocytes. It is suggested that P. lophurae synthesizes purines to a limited extent, and derives most of its purines from the host erythrocyte. The greater incorporation of Na-formate into guanine by infected cells, and its low incorporation into free parasites may be accounted for by parasite conversion of host cell adenine (in the form of ATP) into guanine. Pyrimidine biosynthesis in infected cells can be accounted for by de novo synthesis by the parasite itself.  相似文献   

20.
Cytidine deaminase (cytidine aminohydrolase, 3.5.4.5) is present in Crithidia fasciculata (a mosquito parasite) and in Trypanosoma cruzi (a human pathogen). The enzyme from C. fasciculata deaminated both cytidine and deoxycytidine, the affinity for the former being much lower than the latter. Affinities for both substrates are equal for the T. cruzi enzyme. The production of the enzyme in C. fasciculata was significantly stimulated by the addition of a number of pyrimidine nucleosides (cytidine, uridine, 5-bromouridine, thymidine, orotidine) to the culture media. Only cytidine stimulated enzyme production in T. cruzi. The enzyme from both organisms was unstable in air, even in the frozen state. Stabilization was achieved under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号