首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transformed 3T3 cells incubated with ATP at an alkaline pH become permeable to phosphorylated compounds. The increase in membrane permeability can be induced by incubation with ATP at a neutral pH but only if sodium fluoride is present. Fluoride is not necessary for activation of the permeability change in these cultures at the alkaline pH. The effect of fluoride is very rapid, and sodium fluoride by itself does not alter membrane permeability. The alteration of membrane permeability by ATP in 3T6 cells is reversible; the permeability barrier is restored by switching to neutral buffer in the presence or absence of divalent cations. The restoration of the membrane permeability barrier is prevented by fluoride, and by ATP itself; this action of ATP is specific and no other nucleoside triphosphates or chelating agents produce this effect. Untransformed 3T3 cells do not exhibit any appreciable change in permeability as a result of ATP treatment either in the presence or absence of fluoride. These results are consistent with the presence on the transformed cell surface of an ATP-requiring protein kinase and a fluoride-inhibitable protein phosphatase, which would be involved in the control of membrane permeability.  相似文献   

2.
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

3.
Addition of ATP to medium surrounding intact, transformed 3T3 cells causes the formation of aqueous channels in the plasma membrane. This effect of extracellular ATP is sharply dependent on the pH and temperature of the incubation medium, and is inhibited by low levels of La3+ or ruthenium red; inhibition is also obtained with concentrations of Mg2+ ions that exceed a ratio of Mg/ATP of one. The effect of ATP on membrane channel formation is unaffected by chelators of metal ions or by prior modification of the cell surface with various surface-active enzymes or sulfhydryl reagents. Under conditions which favor aqueous channel formation, incubation of intact 3T6 cells with ATP (gamma-32P) leads to phosphorylation of two membrane components with apparent molecular weight of 40,000 (40K) and 110,000 (110K) daltons; the 110K component which is unaffected by trypsin under normal conditions is rendered trypsin-sensitive by the phosphorylation reaction, probably as a result of a conformational change. Conditions which inhibit aqueous channel formation also inhibit phosphorylation of the 110K protein and decrease the labeling of the 40K component. These results indicate the probable role of cell surface phosphorylation, involving one or both of these components, in the formation of aqueous channels in transformed 3T3 cells. Aqueous channel formation by extracellular ATP is not associated with gross unfolding of the cell surface as revealed by lactoperoxidase-catalyzed iodination of the 3T6 cell surface.  相似文献   

4.
5.
The permeability barrier in mammalian epidermis   总被引:16,自引:4,他引:12       下载免费PDF全文
The structural basis of the permeability barrier in mammalian epidermis was examined by tracer and freeze-fracture techniques. Water-soluble tracers (horesradish peroxidase, lanthanum, ferritin) were injected into neonatal mice or into isolated upper epidermal sheets obtained with staphylococcal exfoliatin. Tracers percolated through the intercellular spaces to the upper stratum granulosum, where further egress was impeded by extruded contents of lamellar bodies. The lamellar contents initially remain segregated in pockets, then fuse to form broad sheets which fill intercellular regions of the stratum corneum, obscuring the outer leaflet of the plasma membrane. These striated intercellular regions are interrupted by periodic bulbous dilatations. When adequately preserved, the interstices of the stratum corneum are wider, by a factor of 5-10 times that previously appreciated. Freeze-fracture replicas of granular cell membranes revealed desmosomes, sparse plasma membrane particles, and accumulating intercellular lamellae, but no tight junctions. Fractured stratum corneum displayed large, smooth, multilaminated fracture faces. By freeze-substitution, proof was obtained that the fracture plane had diverted from the usual intramembranous route in the stratum granulosum to the intercellular space in the stratum corneum. We conclude that: (a) the primary barrier to water loss is formed in the stratum granulosum and is subserved by intercellular deposition of lamellar bodies, rather than occluding zonules; (b) a novel, intercellular freeze-fracture plane occurs within the stratum corneum; (c) intercellular regions of the stratum corneum comprise an expanded, structurally complex, presumably lipid-rich region which may play an important role in percutaneous transport.  相似文献   

6.
External ATP causes a great increase in the passive permeability of the plasma membrane for phosphorylated metabolites and other small molecules in cultured mammalian cells. We previously demonstrated that in CHO-K1 cells an ATP-dependent permeability change was induced in the presence of a mitochondrial inhibitor (KCN or rotenone), a cytoskeleton-attacking agent (vinblastine) and a calmodulin antagonist (trifluoperazine). These permeability changes were reversible but long exposure, for 30-60 min, to ATP together with a mitochondrial inhibitor significantly reduced the cell viability of the treated cells. Since this cell lysis was shown to be due to the ATP-dependent permeability change, we could isolate several clones resistant to the action of the external ATP from CHO-K1 cells after repeated treatment with ATP and rotenone. In 9.1 cells, one of the isolated clones, little or no ATP-dependent permeability change was observed in the presence of either a mitochondrial inhibitor, vinblastine or trifluoperazine. This CHO variant could be specifically resistant as to the change in membrane permeability induced by external ATP, since the permeabilities for the 2-deoxyglucose and drugs used in the present studies were similar to those in the case of the parent cells. These results suggest that a specific defect or alteration in the plasma membrane is involved in the ATP-dependent permeability change. It is also reported that Mg2+-dependent ATPase activity was found on the cell surface of both CHO-K1 and 9.1 cells, and this activity was shown to be not involved in the permeability change controlled by external ATP.  相似文献   

7.
The luminal surface of the bladder epithelium is continuously exposed to urine that differs from blood in its ionic composition and osmolality. The apical plasma membrane of facet or umbrella cells, facing the urine, is covered with rigid-looking plaques consisting of hexagonal uroplakin particles. Together with tight junctions these plaques form a specialized membrane compartment that represents one of the tightest and most impermeable barriers in the body. Plaques also occur in the membrane of cytoplasmic discoid vesicles. Here it is shown shown that synaptobrevin, SNAP23 and syntaxin are perfectly colocalized with uroplakin III at the apical plasma membrane as well as with membranes of discoid vesicles. Such a distribution suggests that discoid vesicles in facet cells may gain access to the apical plasma membrane probably by combination of homotypic and heterotypic fusion events. Furthermore, we detected uroplakin III-containing membranes of different sizes in the urine of healthy humans and rats. Probably facet cells maintain their permeability barrier by a process of continuous membrane regeneration that includes the cutting off of areas of the apical membrane and its replacement by newly fused discoid vesicles.  相似文献   

8.
External ATP causes a passive permeability change in several transformed cells, but not in untransformed cells. We previously demonstrated that in CHO-K1 cells, a transformed clone of Chinese hamster ovary cells, the external ATP-dependent permeability change was induced when the intracellular ATP concentration was reduced by a mitochondrial inhibitor (Kitagawa, T. and Akamatsu, Y. (1981) Biochim. Biophys. Acta 649, 76–82). A permeability change with similar characteristics was also observed when the CHO cells were treated with external ATP and a cytoskeleton-attacking agent such as vinblastine or cytochalasin B. Just like mitochondrial inhibitors, vinblastine could increase the sensitivity of transformed 3T3 cells to external ATP but showed no effect on passive permeability of normal 3T3 cells. However, in contrast with the effect of the mitochondrial inhibitors, the cytoskeleton drugs caused the permeability change with little reduction of intracellular ATP concentration, suggesting different actions of these two kinds of drug on the permeability change. The present results suggest an important role of cytoskeletal structures in controlling the external ATP-dependent permeability change in transformed cells. Possible effects of intracellular ATP on cytoskeletal structures are also discussed.  相似文献   

9.
Addition of ATP causes a dramatic increase in the rate of p-nitrophenyl phosphate hydrolysis by intact 3T6 and 3T3 cells transformed by polyoma virus and simian virus 40 (SV40). In sharp contrast, untransformed 3T3 cells or secondary mouse embryo fibroblasts, either growing or resting, do not respond to ATP. The activation displays specificity, reversibility and dependence on pH, temperature and ATP concentration. The data suggest that exposure to ATP changes the permeability of transformed cells to p-nitrophenyl phosphate thus revealing an internal, ouabain-insensitive, phosphatase activity.  相似文献   

10.
11.
Summary A soybean agglutinin was found to agglutinate mouse, rat and human cell lines transformed by viral carcinogens, but not hamster cells transformed by viral or non-viral carcinogens. Normal cells from which the transformed cells were derived were not agglutinated by this agglutinin, but they were rendered agglutinable after short incubation with trypsin or pronase. The transformed hamster cells, on the other hand, became agglutinable only after prolonged treatment with pronase. The agglutination was specifically inhibited by N-acetyl-d-galactosamine, indicating that N-acetyl-d-galactosamine-like saccharides are part of the receptor sites for soybean agglutinin on the surface membrane. Such sites exist in a cryptic form in normal cells; they are exposed in transformed mouse, rat and human cells, but become less accessible in transformed hamster cells. The receptor sites for soybean agglutinin differ from the receptors for two other plant agglutinins (wheat germ agglutinin that interacts with N-acetyl-d-glucosamine-like sites and Concanavalin A that interacts with -d-glucopyranoside-like sites) which become exposed upon transformation of all lines tested. In normal hamster cells, the receptors for all three agglutinins become exposed after incubation with trypsin, but the exposure of N-acetyl-d-galactosamine-like sites requires the longest enzyme treatment. The results indicate a difference in the location of different carbohydrate-containing sites in the surface membrane. The differences in the exposure of carbohydrate-containing sites in the membrane could not be correlated with the levels of carbohydrate-splitting glycosidases in normal and transformed cells.  相似文献   

12.
13.
Transformed mouse fibroblasts, such as 3T6, exhibit an increase in plasma membrane permeability to nucleotides and other normally impermeant molecules when incubated with external ATP in an alkaline medium low in divalent cations. Increased nucleotide permeability, induced by external ATP, occurs after a 3- to 5-min lag period. Prior to this event, there is a dramatic Na+ influx and K+ efflux, a significant reduction in the levels of intracellular ATP and organic phosphates, and a reduction in the plasma membrane potential. Accordingly, we postulate that these cellular responses to external ATP play a role in the efflux of nucleotides. Ouabain, a specific inhibitor of the plasma membrane (Na+,K+)-ATPase, acts together with low concentrations of external ATP to increase nucleotide permeability in 3T6 cells. This effect occurs at concentrations of ouabain and ATP which alone do not increase nucleotide permeability. In addition, ouabain and low concentrations of ATP alone have little effect on the level of intracellular ATP. This is in contrast to energy inhibitors and uncouplers which appear to enhance nucleotide permeability by lowering the intracellular ATP concentration. Ouabain alone causes a threefold increase in intracellular Na+ levels and a similar reduction in intracellular K+ levels under our experimental conditions, supporting the idea that ion fluxes are involved in the mechanism of permeabilization.  相似文献   

14.
The role of membrane lipids and membrane fluidity in thermosensitivity of mammalian cells is not well understood. The limited experimental data in the literature have led to conflicting results. A detailed investigation of lipid composition and membrane fluidity of cellular membranes was undertaken to determine their relationship to cell survival after hyperthermia. Ehrlich ascites (EA) cells, mouse fibroblast LM cells, and HeLa S3 cells differed in thermosensitivity as expressed by a D0 of 3.1, 5.2, and 9.7 min, respectively, at 44 degrees C. No correlation with cellular thermosensitivity could be found with respect to the amount of cholesterol and to the cholesterol to phospholipid ratio in the particulate fraction of the cells. By growing the cells for some generations in different media, cholesterol and phospholipid content could be changed in the particulate fraction, but no difference in cell survival was observed. When mouse fibroblasts were grown for 24 hr in a serum-free medium supplemented with arachidonic acid (20:4), all subcellular membranes were about eight times richer in phospholipids containing polyunsaturated acyl (PUFA) chains and membrane fluidity was increased as measured by fluorescence polarization of diphenylhexatriene (DPH). The alterations resulted in a higher thermosensitivity. When mouse fibroblasts were made thermotolerant no change in cholesterol and phospholipid content could be found in the particulate fraction of the cells. The relative weights and the quality of the phospholipids as well as the fatty acid composition of the phospholipids appeared to be the same for normal and thermotolerant cells. Fluidity measurements in whole cells, isolated plasma membranes, and liposomes prepared from phospholipids extracted from the cells revealed no significant differences between normal and thermotolerant fibroblasts when assayed by fluorescence polarization (DPH) and electron spin resonance (5-nitroxystearate). It is concluded that the mechanism of thermal adaptation resulting in differences in lipid composition as reported in the literature differs from the mechanism of the acquisition of thermal tolerance. The lower heat sensitivity of thermotolerant cells, as initiated by a nonlethal triggering heat dose followed by an induction period at 37 degrees C, does not involve changes in lipid composition and membrane fluidity. However, a prompt and clear (also nonlethal) change in membrane fluidity by an increase in PUFA does result in an increased thermosensitivity, probably because of an indirect effect via the lipids in causing disfunctioning of proteins in the membrane and/or the cytoskeleton.  相似文献   

15.
The mechanism underlying ATP-induced permeabilization of transformed mouse fibroblasts was studied by using nonhydrolyzable analogues of ATP. Incubation of 3T6 cells with 0.6 mM of either ATP, 5'-adenylyl imidodiphosphate (p[NH]ppA) or adenosine 5'-[beta, gamma-methylene]triphosphate (p[CH2]ppA) resulted in an increase of 17-, 8- or 5-times, respectively, in the cell membrane permeability, measured by the efflux of normally impermeant metabolites from the cells. The induced cell permeabilization was preceded by a reduction in the membrane potential (delta psi), determined according to the distribution of the cation tetraphenylphosphonium (TPP+) between the cells and the medium. Reduction of 26, 18 and 13 mV in delta psi was exerted by 0.6 mM of either ATP, p[NH]ppA or p[CH2]ppA, respectively. In 3T3 cells the untransformed counterparts of 3T6 cells, neither reduction of delta psi, nor alterations in membrane permeability were exerted by either ATP or by its analogues. The data indicate that the dissociation of the beta, gamma-phosphate bond is not essential for membrane permeabilization by external ATP, implying that the binding of ATP to the cell surface of transformed cells is sufficient to initiate the permeabilization process. The data also suggest that delta psi is involved in the control of membrane permeability.  相似文献   

16.
The mechanism underlying ATP-induced permeabilization of transformed mouse fibroblasts was studied by using nonhydrolyzable analogues of ATP. Incubation of 3T6 cells with 0.6 mM of either ATP, 5′-adenylyl imidodiphosphate (p[NH]ppA) or adenosine 5′-[β,γ-methylene]triphosphate (p[CH2]ppA) resulted in an increase of 17-, 8- or 5-times, respectively, in the cell membrane permeability, measured by the efflux of normally impermeant metabolites from the cells. The induced cell permeabilization was preceded by a reduction in the membrane potential (Δψ), determined according to the distribution of the cation tetraphenylphosphonium (TPP+) between the cells and the medium. Reduction of 26, 18 and 13 mV in Δψ was exerted by 0.6 mM of either ATP, p[NH]ppA or p[CH2]ppA, respectively. In 3T3 cells the untransformed counterparts of 3T6 cells, neither reduction of Δψ, nor alterations in membrane permeability were exerted by either ATP or by its analogues. The data indicate that the dissociation of the β,γ-phosphate bond is not essential for membrane permeabilization by external ATP, implying that the binding of ATP to the cell surface of transformed cells is sufficient to initiate the permeabilization process. The data also suggest that Δψ is involved in the control of membrane permeability.  相似文献   

17.
Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC‐MS‐based isotope tracer studies with oxygen uptake measurements in a quantitative redox‐balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine‐driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine‐driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.  相似文献   

18.
Measurements of ATP in mammalian cells   总被引:8,自引:0,他引:8  
Levels of phosphorylated adenosine nucleotides, including the universal energy carrier adenosine 5(')-triphosphate (ATP) and its metabolites adenosine 5(')-diphosphate (ADP) and adenosine 5(')-monophosphate (AMP), define the energy state in living cells and are dependent mainly on mitochondrial function. In this article, we describe a method based on the luciferase-luciferin system used to measure mitochondrial ATP synthesis continuously in permeabilized mammalian cells and mitochondria isolated from animal tissues. We also describe a technique that uses the expression of recombinant targeted luciferase to report ATP content in different cell compartments. Finally, we describe an HPLC-based method for accurate measurement of ATP, ADP, and AMP in cultured cells and animal tissues.  相似文献   

19.
20.
External ATP causes a rapid increase in passive permeability to nucleotides and phosphate esters in transformed cell lines, such as 3T6 mouse fibroblasts. However, untransformed lines, such as 3T3, do not show a similar sensitivity to external ATP. Ca2+ inhibits permeabilization, but only at concentrations approaching those of external ATP. In contrast, La3+ and Tb3+ inhibit ATP-dependent permeabilization at one-fifth the concentration of external ATP. Considering reports that lanthanides can substitute for calcium ion in many enzymatic reactions, often with a higher affinity, it would appear that Ca2+ plays a specific role in the maintenance of a passive membrane permeability barrier and in opposing the effects of external ATP.Other data suggest a regulatory role for the Ca2+-calmodulin complex in the permeabilization process. Trifluoperazine, chlorpromazine and W-7, compounds which inhibit cellular functions dependent on the Ca2+-calmodulin complex, are able to enhance the effect of external ATP. Thus, a dramatic stimulation of nucleotide permeability occurs with concentrations of external ATP and inhibitor that are ineffective when added alone. Calmodulin antagonists and low concentrations of external ATP increased membrane permeability to Na+ and K+ as was previously shown for permeabilization with ATP alone. Earlier studies have shown that energy inhibitors which reduce intracellular ATP levels greatly increase the sensitivity of transformed cells to external ATP. However, the Ca2+-calmodulin antagonists used in the present study exert their effects at concentrations which do not alter intracellular ATP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号