首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g?1‐C compared to the control (0.24–1.86 mg‐CO2–C g?1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (?10.22 to ?23.56 mg‐CO2–C g?1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g?1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g?1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles.  相似文献   

2.
Both soil and biochar properties are known to influence greenhouse gas emissions from biochar‐amended soils, but poor understanding of underlying mechanisms challenges prediction and modeling. Here, we examine the effect of six lignocellulosic biochars produced from the pyrolysis of corn stover and wood feedstocks on CO2 and N2O emissions from soils collected from two bioenergy cropping systems. Effects of biochar on total accumulated CO2‐C emissions were minimal (<0.45 mg C g?1 soil; <10% of biochar C), consistent with mineralization and hydrolysis of small labile organic and inorganic C fractions in the studied biochars. Comparisons of soil CO2 emissions with emissions from microbially inoculated quartz–biochar mixtures (‘quartz controls’) provide evidence of soil and biochar‐specific negative priming. Five of six biochar amendments suppressed N2O emissions from at least one soil, and the magnitude of N2O emissions suppression varied with respect to both biochar and soil types. Biochar amendments consistently decreased final soil NO3? concentrations, while contrasting effects on pH, NH4+, and DOC highlighted the potential for formation of anaerobic microsites in biochar‐amended soils and consequential shifts in the soil redox environment. Thus, results implicated both reduced substrate availability and redox shifts as potential factors contributing to N2O emission suppression. More research is needed to confirm these mechanisms, but overall our results suggest that soil biochar amendments commonly reduce N2O emissions and have little effect on CO2 emissions beyond the mineralization and/or hydrolysis of labile biochar C fractions. Considering the large C credit for the biochar C, we conclude that biochar amendments can reduce greenhouse gas emissions and enhance the climate change mitigation potential of bioenergy cropping systems.  相似文献   

3.
The stability and decomposition of biochar are fundamental to understand its persistence in soil, its contribution to carbon (C) sequestration, and thus its role in the global C cycle. Our current knowledge about the degradability of biochar, however, is limited. Using 128 observations of biochar‐derived CO2 from 24 studies with stable (13C) and radioactive (14C) carbon isotopes, we meta‐analyzed the biochar decomposition in soil and estimated its mean residence time (MRT). The decomposed amount of biochar increased logarithmically with experimental duration, and the decomposition rate decreased with time. The biochar decomposition rate varied significantly with experimental duration, feedstock, pyrolysis temperature, and soil clay content. The MRTs of labile and recalcitrant biochar C pools were estimated to be about 108 days and 556 years with pool sizes of 3% and 97%, respectively. These results show that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long‐term C sequestration in soil. The second database (116 observations from 21 studies) was used to evaluate the priming effects after biochar addition. Biochar slightly retarded the mineralization of soil organic matter (SOM; overall mean: ?3.8%, 95% CI = ?8.1–0.8%) compared to the soil without biochar addition. Significant negative priming was common for studies with a duration shorter than half a year (?8.6%), crop‐derived biochar (?20.3%), fast pyrolysis (?18.9%), the lowest pyrolysis temperature (?18.5%), and small application amounts (?11.9%). In contrast, biochar addition to sandy soils strongly stimulated SOM mineralization by 20.8%. This indicates that biochar stimulates microbial activities especially in soils with low fertility. Furthermore, abiotic and biotic processes, as well as the characteristics of biochar and soils, affecting biochar decomposition are discussed. We conclude that biochar can persist in soils on a centennial scale and that it has a positive effect on SOM dynamics and thus on C sequestration.  相似文献   

4.
Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated single C additions, but they are not very representative for litterfall and root exudation in many terrestrial ecosystems. We evaluated effects of 13C‐labeled glucose added to soil in three temporal patterns: single, repeated, and continuous on dynamics of CO2 and priming of SOC decomposition over 6 months. Total and 13C labeled CO2 were monitored to analyze priming dynamics and net C balance between SOC loss caused by priming and the retention of added glucose‐C. Cumulative priming ranged from 1.3 to 5.5 mg C g?1 SOC in the subtropical, and from ?0.6 to 5.5 mg C g?1 SOC in the tropical soils. Single addition induced more priming than repeated and continuous inputs. Therefore, single additions of high substrate amounts may overestimate priming effects over the short term. The amount of added glucose C remaining in soil after 6 months (subtropical: 8.1–11.2 mg C g?1 SOC or 41‐56% of added glucose; tropical: 8.7–15.0 mg C g?1 SOC or 43–75% of glucose) was substantially higher than the net C loss due to SOC decomposition including priming effect. This overcompensation of C losses was highest with continuous inputs and lowest with single inputs. Therefore, raised labile organic C input to soils by higher plant productivity will increase SOC content even though priming accelerates decomposition of native SOC. Consequently, higher continuous input of C belowground by plants under warming or elevated CO2 can increase C stocks in soil despite accelerated C cycling by priming in soils.  相似文献   

5.
As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha?1 yr?1 corn straw (CS) amendment, and 2.4 t ha?1 yr?1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg?1 grain) than that of Control (0.24 kg CO2‐Ckg?1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ckg?1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter.  相似文献   

6.
We developed a biochar model within the Agricultural Production Systems sIMulator (APSIM) software that integrates biochar knowledge and enables simulation of biochar effects within cropping systems. The model has algorithms that mechanistically connect biochar to soil organic carbon (SOC), soil water, bulk density (BD), pH, cation exchange capacity, and organic and mineral nitrogen. Soil moisture (SW)–temperature–nitrogen limitations on the rate of biochar decomposition were included as well as biochar‐induced priming effect on SOC mineralization. The model has 10 parameters that capture the diversity of biochar types, 15 parameters that address biochar‐soil interactions and 4 constants. The range of values and their sensitivity is reported. The biochar model was connected to APSIM's maize and wheat crop models to investigate long‐term (30 years) biochar effects on US maize and Australia wheat in various soils. Results from this sensitivity analysis showed that the effect of biochar was the largest in a sandy soil (Australian wheat) and the smallest in clay loam soil (US maize). On average across cropping systems and soils the order of sensitivity and the magnitude of the response of biochar to various soil‐plant processes was (from high to low): SOC (11% to 86%) > N2O emissions (?10% to 43%43%) > plant available water content (0.6% to 12.9%) > BD (?6.5% to ?1.7%) > pH (?0.8% to 6.3%) > net N mineralization (?19% to 10%) > CO2 emissions (?2.0% to 4.3%) > water filled pore space (?3.7% to 3.4%) > grain yield (?3.3% to 1.8%) > biomass (?1.6% to 1.4%). Our analysis showed that biochar has a larger impact on environmental outcomes rather than agricultural production. The mechanistic model has the potential to optimize biochar application strategies to enhance environmental and agronomic outcomes but more work is needed to fill knowledge gaps identified in this work.  相似文献   

7.
This study was set up to identify the long‐term effect of biochar on soil C sequestration of recent carbon inputs. Arable fields (n = 5) were found in Belgium with charcoal‐enriched black spots (>50 m2; n = 14) dating >150 years ago from historical charcoal production mound kilns. Topsoils from these ‘black spots’ had a higher organic C concentration [3.6 ± 0.9% organic carbon (OC)] than adjacent soils outside these black spots (2.1 ± 0.2% OC). The soils had been cropped with maize for at least 12 years which provided a continuous input of C with a C isotope signature (δ13C) ?13.1, distinct from the δ13C of soil organic carbon (?27.4 ‰) and charcoal (?25.7 ‰) collected in the surrounding area. The isotope signatures in the soil revealed that maize‐derived C concentration was significantly higher in charcoal‐amended samples (‘black spots’) than in adjacent unamended ones (0.44% vs. 0.31%; = 0.02). Topsoils were subsequently collected as a gradient across two ‘black spots’ along with corresponding adjacent soils outside these black spots and soil respiration, and physical soil fractionation was conducted. Total soil respiration (130 days) was unaffected by charcoal, but the maize‐derived C respiration per unit maize‐derived OC in soil significantly decreased about half (< 0.02) with increasing charcoal‐derived C in soil. Maize‐derived C was proportionally present more in protected soil aggregates in the presence of charcoal. The lower specific mineralization and increased C sequestration of recent C with charcoal are attributed to a combination of physical protection, C saturation of microbial communities and, potentially, slightly higher annual primary production. Overall, this study provides evidence of the capacity of biochar to enhance C sequestration in soils through reduced C turnover on the long term.  相似文献   

8.
Incorporating crop residues and biochar has received increasing attention as tools to mitigate atmospheric carbon dioxide (CO2) emissions and promote soil carbon (C) sequestration. However, direct comparisons between biochar, torrefied biomass, and straw on both labile and recalcitrant soil organic matter (SOM) remain poorly understood. In this study, we explored the impact of biochars produced at different temperatures and torrefied biomass on the simple C substrates (glucose, amino acids), plant residues (Lolium perenne L.), and native SOM breakdown in soil using a 14C labeling approach. Torrefied biomass and biochars produced from wheat straw at four contrasting pyrolysis temperatures (250, 350, 450, and 550 °C) were incorporated into a sandy loam soil and their impact on C turnover compared to an unamended soil or one amended with unprocessed straw. Biochar, torrefied biomass, and straw application induced a shift in the soil microbial community size, activity, and structure with the greatest effects in the straw‐amended soil. In addition, they also resulted in changes in microbial carbon use efficiency (CUE) leading to more substrate C being partitioned into catabolic processes. While overall the biochar, torrefied biomass, and straw addition increased soil respiration, it reduced the turnover rate of the simple C substrates, plant residues, and native SOM and had no appreciable effect on the turnover rate of the microbial biomass. The negative SOM priming was positively correlated with biochar production temperature. We therefore ascribe the increase in soil CO2 efflux to biochar‐derived C rather than that originating from SOM. In conclusion, the SOM priming magnitude is strongly influenced by both the soil organic C quality and the biochar properties. In comparison with straw, biochar has the greatest potential to promote soil C storage. However, straw and torrefied biomass may have other cobenefits which may make them more suitable as a CO2 abatement strategy.  相似文献   

9.
Applying biochar to agricultural soils has been proposed as a means of sequestering carbon (C) while simultaneously enhancing soil health and agricultural sustainability. However, our understanding of the long‐term effects of biochar and annual versus perennial cropping systems and their interactions on soil properties under field conditions is limited. We quantified changes in soil C concentration and stocks, and other soil properties 6 years after biochar applications to corn (Zea mays L.) and dedicated bioenergy crops on a Midwestern US soil. Treatments were as follows: no‐till continuous corn, Liberty switchgrass (Panicum virgatum L.), and low‐diversity prairie grasses, 45% big bluestem (Andropogon gerardii), 45% Indiangrass (Sorghastrum nutans), and 10% sideoats grama (Bouteloua curtipendula), as main plots, and wood biochar (9.3 Mg/ha with 63% total C) and no biochar applications as subplots. Biochar‐amended plots accumulated more C (14.07 Mg soil C/ha vs. 2.25 Mg soil C/ha) than non‐biochar‐amended plots in the 0–30 cm soil depth but other soil properties were not significantly affected by the biochar amendments. The total increase in C stocks in the biochar‐amended plots was nearly twice (14.07 Mg soil C/ha) the amount of C added with biochar 6 years earlier (7.25 Mg biochar C/ha), suggesting a negative priming effect of biochar on formation and/or mineralization of native soil organic C. Dedicated bioenergy crops increased soil C concentration by 79% and improved both aggregation and plant available water in the 0–5 cm soil depth. Biochar did not interact with the cropping systems. Overall, biochar has the potential to increase soil C stocks both directly and through negative priming, but, in this study, it had limited effects on other soil properties after 6 years.  相似文献   

10.
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.  相似文献   

11.
An invasive wetland grass primes deep soil carbon pools   总被引:1,自引:0,他引:1       下载免费PDF全文
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real‐time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant‐derived, surface SOM‐derived (0–40 cm, active root zone of native marsh vegetation), and deep SOM‐derived mineralization (40–80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep‐buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long‐term C sink.  相似文献   

12.
As studies on biochar stability in field conditions are very scarce, the carbon sequestration potential of biochar application to agricultural soils remains uncertain. This study assessed the stability of biochar in field conditions, the effect of plant roots on biochar stability and the effect of biochar on original soil organic matter (SOM) decomposition in two (Italy and United Kingdom) short rotation coppice systems (SRCs), using continuous soil respiration monitoring and periodic isotopic (δ13CO2) measurements. When root growth was excluded, only 7% and 3% of the biochar carbon added was decomposed after 245 and 164 days in Italy and United Kingdom sites respectively. In the presence of roots, this percentage was increased to 9% and 8%, suggesting a small positive priming effect of roots on biochar decomposition. A decreased decomposition rate of original SOM was observed at both sites after biochar incorporation, suggesting a protective effect of biochar on SOM. This study supports the carbon sequestration potential of biochar and highlights the role of root activity on biochar decomposition, questioning the applicability of laboratory incubation studies to assess biochar stability.  相似文献   

13.
While biochar soil amendment has been widely proposed as a soil organic carbon (SOC) sequestration strategy to mitigate detrimental climate changes in global agriculture, the SOC sequestration was still not clearly understood for the different effects of fresh and aged biochar on SOC mineralization. In the present study of a two‐factorial experiment, topsoil samples from a rice paddy were laboratory‐incubated with and without fresh or aged biochar pyrolyzed of wheat residue and with and without crop residue‐derived dissolved organic matter (CRM) for monitoring soil organic matter decomposition under controlled conditions. The six treatments included soil with no biochar, with fresh biochar and with aged biochar treated with CRM, respectively. For fresh biochar treatment, the topsoil of a same rice paddy was amended with wheat biochar directly from a pyrolysis wheat straw, the soil with aged biochar was collected from the same soil 6 years following a single amendment of same biochar. Total CO2 emission from the soil was monitored over a 64 day time span of laboratory incubation, while microbial biomass carbon and phospholipid fatty acid (PLFA) were determined at the end of incubation period. Without CRM, total organic carbon mineralization was significantly decreased by 38.8% with aged biochar but increased by 28.9% with fresh biochar, compared to no biochar. With CRM, however, the significantly highest net carbon mineralization occurred in the soil without biochar compared to the biochar‐amended soil. Compared to aged biochar, fresh biochar addition significantly increased the total PLFA concentration by 20.3%–33.8% and altered the microbial community structure by increasing 17:1ω8c (Gram‐negative bacteria) and i17:0 (Gram‐positive bacteria) mole percentages and by decreasing the ratio of fungi/bacteria. Furthermore, biochar amendment significantly lowered the metabolic quotient of SOC decomposition, thereby becoming greater with aged biochar than with fresh biochar. The finding here suggests that biochar amendment could improve carbon utilization efficiency by soil microbial community and SOC sequestration potential in paddy soil can be enhanced by the presence of biochar in soil over the long run.  相似文献   

14.
Southeast Asia has the highest rate of tropical rainforest deforestation worldwide, and large deforested areas have been replaced ultimately by the highly invasive grass Imperata cylindrica. However, information on the carbon (C) budget with such land transition is very scarce. This study presents the dynamics of soil C following rainforest destruction and the subsequent establishment of Imperata grassland in the lowland humid tropics of Indonesian Borneo using stable C isotopes. To evaluate the relative contribution of organic matter originating from primary forest (C3) and grasslands (C4), we compared soil C stock and natural 13C abundance from six sites to a depth of 100 cm using samples with a wide range of soil textures. Twelve years after the first soil sampling in the grasslands, we re‐sampled to examine temporal changes in soil organic matter. The grassland topsoil (0–5 cm) is an active layer with rapid decomposition and incorporation of fresh C (mean residence time: 7.5 year) and a substantial proportion of the stable C pool (37%). The decline in forest‐derived C was slight, even at 5–10 cm depths, and subsoil (20–100 cm depth) forest‐derived C did not change along the forest‐to‐grassland chronosequence. Grassland‐derived C stock increased significantly in the subsurface and subsoils (5–100 cm). Simulation indicated that total soil C stock (0–100 cm) increased by 18.6 Mg ha?1 from initial primary forest (58.0 Mg ha?1) to a new equilibrium state of the grassland (76.6 Mg ha?1) after 30–50 years of grassland establishment. This research indicates that the soil did not function as a CO2 source when the deforested area was replaced by Imperata grassland on the Ultisols of the Asian humid tropics. Instead, increased soil C stocks offset CO2 emissions, with the C offset accounting for 6.6–7.4% of the loss of biomass C stock.  相似文献   

15.
Biochar has been widely researched as an important technology for climate smart agriculture, yet work is still necessary to identify the magnitude of potential greenhouse gas (GHG) mitigation and mechanisms involved. This study measured slow‐pyrolysis wood‐derived biochar's impact on GHG efflux, mineral N dynamics, and soil organic C in a series of two incubations across fertilized and unfertilized agricultural soils and soil moisture regimes. This research explored the magnitude of biochar's full GHG mitigation potential and drivers of such impacts. Results of this incubation indicate slow‐pyrolysis wood‐derived biochar has potential to provide annual emission reductions of 0.58–1.72 Mg CO2‐eq ha?1 at a 25 Mg ha?1 biochar application rate. The greatest GHG mitigation potential was from C sequestration and nitrous oxide (N2O) reduction in mineral N fertilized soils, with minimal impacts on N2O emissions in unfertilized soils, carbon dioxide (CO2) emissions, and methane (CH4) uptake. Analysis of mineral N dynamics in the bulk soil and on biochar isolates indicated that neither biochar impacts on net mineralization and nitrification nor retention of ammonium () on biochar isolates could explain biochar's N2O reduction. Instead, biochar amendments exhibited consistent N2O emission reductions relative to the N2O emission in the control soil regardless of soil type and fertilization. Results across a soil moisture gradient suggest that woody biochar may aerate soils shifting redox conditions and subsequent N2O production. Understanding the magnitude of biochar's GHG reduction potential and the mechanisms driving these effects can help inform biochar modeling efforts, explain field results and identify agricultural applications that maximize biochar's full GHG mitigation potential.  相似文献   

16.
Carbon dioxide (CO2) enhancement (eCO2) and N addition (aN) have been shown to increase net primary production (NPP) and to affect water‐use efficiency (WUE) for many temperate ecosystems, but few studies have been made on subtropical tree species. This study compared the responses of NPP and WUE from a mesocosm composing five subtropical tree species to eCO2 (700 ppm), aN (10 g N m?2 yr?1) and eCO2 × aN using open‐top chambers. Our results showed that mean annual ecosystem NPP did not changed significantly under eCO2, increased by 56% under aN and 64% under eCO2 × aN. Ecosystem WUE increased by 14%, 55%, and 61% under eCO2, aN and eCO2 × aN, respectively. We found that the observed responses of ecosystem WUE were largely driven by the responses of ecosystem NPP. Statistical analysis showed that there was no significant interactions between eCO2 and aN on ecosystem NPP (= 0.731) or WUE (= 0.442). Our results showed that increasing N deposition was likely to have much stronger effects on ecosystem NPP and WUE than increasing CO2 concentration for the subtropical forests. However, different tree species responded quite differently. aN significantly increased annual NPP of the fast‐growing species (Schima superba). Nitrogen‐fixing species (Ormosia pinnata) grew significantly faster only under eCO2 × aN. eCO2 had no effects on annual NPP of those two species but significantly increased annual NPP of other two species (Castanopsis hystrix and Acmena acuminatissima). Differential responses of the NPP among different tree species to eCO2 and aN will likely have significant implications on the species composition of subtropical forests under future global change.  相似文献   

17.
The use of deep‐rooting pasture species as a management practice can increase the allocation of plant carbon (C) below ground and enhance C storage. A 2‐year lysimeter trial was set up to compare changes in C stocks of soils under either deep‐ or shallow‐rooting pastures and investigate whether biochar addition below the top 10 cm could promote root growth at depth. For this i) soil ploughing at cultivation was simulated in a silt loam soil and in a sandy soil by inverting the 0 to 10 and 10‐ to 20‐cm‐depth soil layers, and a distinctive biochar (selected for each soil to overcome soil‐specific plant growth limitations) was mixed at 10 Mg ha?1 in the buried layer, where appropriate and ii) three pasture types with contrasting root systems were grown. In the silt loam, soil inversion resulted in a general loss of C (2.0–8.1 Mg ha?1), particularly in the buried horizon, under shallow‐rooting pastures only. The addition of a C‐rich biochar (equivalent to 7.6 Mg C ha?1) to this soil resulted in a net C gain (21–40% over the non‐biochar treatment, < 0.10) in the buried layer under all pastures; this overcame the loss of C in this horizon under shallow‐rooting pastures. In the sandy soil, all pastures were able to maintain soil C stocks at 10–20 cm depth over time, with minor gains of C (1.6–5.1 Mg ha?1) for the profile. In this soil, the exposure of a skeletal‐ and nutrient‐depleted soil layer at the surface may have fostered root growth at depth. The addition of a nutrient‐rich biochar (equivalent to 3.6 Mg C ha?1) to this soil had no apparent effect on C stocks. More research is needed to understand the mechanisms through which soil C stocks at depth are preserved.  相似文献   

18.
Conversion of large areas of agricultural grassland is inevitable if European and UK domestic production of biomass is to play a significant role in meeting demand. Understanding the impact of these land‐use changes on soil carbon cycling and stocks depends on accurate predictions from well‐parameterized models. Key considerations are cultivation disturbance and the effect of autotrophic root input stimulation on soil carbon decomposition under novel biomass crops. This study presents partitioned parameters from the conversion of semi‐improved grassland to Miscanthus bioenergy production and compares the contribution of autotrophic and heterotrophic respiration to overall ecosystem respiration of CO2 in the first and second years of establishment. Repeated measures of respiration from within and without root exclusion collars were used to produce time‐series model integrations separating live root inputs from decomposition of grass residues ploughed in with cultivation of the new crop. These parameters were then compared to total ecosystem respiration derived from eddy covariance sensors. Average soil surface respiration was 13.4% higher in the second growing season, increasing from 2.9 to 3.29 g CO2‐C m?2 day?1. Total ecosystem respiration followed a similar trend, increasing from 4.07 to 5.4 g CO2‐C m?2 day?1. Heterotrophic respiration from the root exclusion collars was 32.2% lower in the second growing season at 1.20 g CO2‐C m?2 day?1 compared to the previous year at 1.77 g CO2‐C m?2 day?1. Of the total respiration flux over the two‐year time period, aboveground autotrophic respiration plus litter decomposition contributed 38.46% to total ecosystem respiration while belowground autotrophic respiration and stimulation by live root inputs contributed 46.44% to soil surface respiration. This figure is notably higher than mean figures for nonforest soils derived from the literature and demonstrates the importance of crop‐specific parameterization of respiration models.  相似文献   

19.
The role and significance of physically protected soil organic carbon (SOC) in regulating SOC dynamics remains unclear. Here, we developed a simple theoretical model (DP model) considering dynamic physical protection to simulate the dynamics of protected (Cp) and unprotected SOC (Cu), and compared the modelling results with a conventional two‐pool (fast vs. slow) model considering chemical recalcitrance. The two models were first constrained using extensive SOC data collected from soils with and without fresh carbon (C) inputs under incubation conditions, and then applied to project SOC dynamics and explore mechanisms underpinning the priming effect (PE). Overall, both models explained more than 99% of the variances in observed SOC dynamics. The DP model predicted that Cp accounted for the majority of total SOC. As decomposition proceeds, the proportion of Cp reached >90% and kept relatively constant. Although the similar performance of the two models in simulating observed total SOC dynamics, their predictions of future SOC dynamics were divergent, challenging the predictions of widely used pool‐based models. The DP model also suggested alternative mechanisms underpinning the priming of SOC decomposition by fresh C inputs. The two‐pool model suggested that the PE was caused by the stimulated decomposition rates, especially for the slow recalcitrant pool, while the DP model suggested that the PE might be the combined consequence of stimulated Cu decomposition, the liberation of Cp to decomposition and the inhibition of the protection of unprotected SOC. The model‐data integration provided a new explanation for the PE, highlighting the importance of liberation of initially physically protected SOC to decomposition by new C inputs. Our model‐data integration demonstrated the importance of simulating physical protection processes for reliable SOC predictions, and provided new insights into mechanistic understanding of the priming effect.  相似文献   

20.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号