首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During adhesion-mediated neuronal growth cone guidance microtubules undergo major rearrangements. However, it is unknown whether microtubules extend to adhesion sites because of changes in plus-end polymerization and/or translocation dynamics, because of changes in actin-microtubule interactions, or because they follow the reorganization of the actin cytoskeleton. Here, we used fluorescent speckle microscopy to directly quantify microtubule and actin dynamics in Aplysia growth cones as they turn towards beads coated with the cell adhesion molecule apCAM. During the initial phase of adhesion formation, dynamic microtubules in the peripheral domain preferentially explore apCAM-beads prior to changes in growth cone morphology and retrograde actin flow. Interestingly, these early microtubules have unchanged polymerization rates but spend less time in retrograde translocation due to uncoupling from actin flow. Furthermore, microtubules exploring the adhesion site spend less time in depolymerization. During the later phase of traction force generation, the central domain advances and more microtubules in the peripheral domain extend because of attenuation of actin flow and clearance of F-actin structures. Microtubules in the transition zone and central domain, however, translocate towards the adhesion site in concert with actin arcs and bundles, respectively. We conclude that adhesion molecules guide neuronal growth cones and underlying microtubule rearrangements largely by differentially regulating microtubule-actin coupling and actin movements according to growth cone region and not by controlling plus-end polymerization rates.  相似文献   

2.
Dynamic microtubules explore the peripheral (P) growth cone domain using F actin bundles as polymerization guides. Microtubule dynamics are necessary for growth cone guidance; however, mechanisms of microtubule reorganization during growth cone turning are not well understood. Here, we address these issues by analyzing growth cone steering events in vitro, evoked by beads derivatized with the Ig superfamily cell adhesion protein apCAM. Pharmacological inhibition of microtubule assembly with low doses of taxol or vinblastine resulted in rapid clearance of microtubules from the P domain with little effect on central (C) axonal microtubules or actin-based motility. Early during target interactions, we detected F actin assembly and activated Src, but few microtubules, at apCAM bead binding sites. The majority of microtubules extended toward bead targets after F actin flow attenuation occurred. Microtubule extension during growth cone steering responses was strongly suppressed by dampening microtubule dynamics with low doses of taxol or vinblastine. These treatments also inhibited growth cone turning responses, as well as focal actin assembly and accumulation of active Src at bead binding sites. These results suggest that dynamic microtubules carry signals involved in regulating Src-dependent apCAM adhesion complexes involved in growth cone steering.  相似文献   

3.
Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.  相似文献   

4.
Effects of dynactin disruption and dynein depletion on axonal microtubules   总被引:1,自引:1,他引:0  
We investigated potential roles of cytoplasmic dynein in organizing axonal microtubules either by depleting dynein heavy chain from cultured neurons or by experimentally disrupting dynactin. The former was accomplished by siRNA while the latter was accomplished by overexpressing P50-dynamitin. Both methods resulted in a persistent reduction in the frequency of transport of short microtubules. To determine if the long microtubules in the axon also undergo dynein-dependent transport, we ascertained the rates of EGFP-EB3 "comets" observed at the tips of microtubules during assembly. The rates of the comets, in theory, should reflect a combination of the assembly rate and any potential transport of the microtubule. Comets were initially slowed during P50-dynamitin overexpression, but this effect did not persist beyond the first day and was never observed in dynein-depleted axons. In fact, the rates of the comets were slightly faster in dynein-depleted axons. We conclude that the transient effect of P50-dynamitin overexpression reflects a reduction in microtubule polymerization rates. Interestingly, after prolonged dynein depletion, the long microtubules were noticeably misaligned in the distal regions of axons and failed to enter the filopodia of growth cones. These results suggest that the forces generated by cytoplasmic dynein do not transport long microtubules, but may serve to align them with one another and also permit them to invade filopodia.  相似文献   

5.
We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by bisindolylmaleimide and related compounds had no perceptible effect on growth cone motility, but completely blocked phorbol ester effects. Significantly, MT advance occurred despite continued retrograde F-actin flow-a process that normally inhibits MT advance. Polymer assembly was necessary for PKC-mediated MT advance since it was highly sensitive to a range of antagonists at concentrations that specifically interfere with microtubule dynamics. Biochemical evidence is presented that PKC activation promotes formation of a highly dynamic MT pool. Direct assessment of microtubule dynamics and translocation using the fluorescent speckle microscopy microtubule marking technique indicates PKC activation results in a nearly twofold increase in the typical lifetime of a MT growth episode, accompanied by a 1.7-fold increase and twofold decrease in rescue and catastrophe frequencies, respectively. No significant effects on instantaneous microtubule growth, shortening, or sliding rates (in either anterograde or retrograde directions) were observed. MTs also spent a greater percentage of time undergoing retrograde transport after PKC activation, despite overall MT advance. These results suggest that regulation of MT assembly by PKC may be an important factor in determining neurite outgrowth and regrowth rates and may play a role in other cellular processes dependent on directed MT advance.  相似文献   

6.
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning.  相似文献   

7.
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.  相似文献   

8.
Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport.  相似文献   

9.
The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.  相似文献   

10.
We investigated the motion of filopodia and actin bundles in lamellipodia of motile cells, using time-lapse sequences of polarized light images. We measured the velocity of retrograde flow of the actin network and the lateral motion of filopodia and actin bundles of the lamellipodium. Upon noting that laterally moving filopodia and actin bundles are always tilted with respect to the direction of retrograde flow, we propose a simple geometric model for the mechanism of lateral motion. The model establishes a relationship between the speed of lateral motion of actin bundles, their tilt angle with respect to the direction of retrograde flow, and the speed of retrograde flow in the lamellipodium. Our experimental results verify the quantitative predictions of the model. Furthermore, our observations support the hypothesis that lateral movement of filopodia is caused by retrograde flow of tilted actin bundles and by their growth through actin polymerization at the tip of the bundles inside the filopodia. Therefore we conclude that the lateral motion of tilted filopodia and actin bundles does not require a separate motile mechanism but is the result of retrograde flow and the assembly of actin filaments and bundles near the leading edge of the lamellipodium.  相似文献   

11.
Cell morphogenesis requires dynamic communication between actin filaments and microtubules which is mediated, at least in part, by direct structural links between the two cytoskeletal systems. Here, we examined interaction between the CLIP-associated proteins (CLASP) CLASP1 and CLASP2, and actin filaments. We demonstrate that, in addition to a well-established association with the distal ends of microtubules, CLASP2alpha co-localizes with stress fibers, and that both CLASP1alpha and CLASP2alpha co-immunoprecipitate with actin. GFP-CLASP2alpha exhibits retrograde flow in the lamellipodia of Xenopus primary fibroblasts and in the filopodia of Xenopus spinal cord neurons. A deletion mapping analysis reveals that both the microtubule-binding domain of CLASP2 (which is homologous between all CLASPs) and the N-terminal dis1/TOG domain of CLASP2alpha (which is homologous between alpha isoforms) possess actin-binding activity. Fluorescence resonance energy transfer experiments demonstrate significant energy transfer between YFP-CLASP2alpha and CFP-actin. Our results indicate that CLASPs function as actin/microtubule crosslinkers in interphase cells. We propose that CLASPs facilitate recognition of actin filaments by the plus ends of growing microtubules at the initial stages of actin-microtubule interaction. Cell Motil.  相似文献   

12.
Campellone KG  Webb NJ  Znameroski EA  Welch MD 《Cell》2008,134(1):148-161
The Arp2/3 complex is an actin nucleator that plays a critical role in many cellular processes. Its activities are regulated by nucleation-promoting factors (NPFs) that function primarily during plasma membrane dynamics. Here we identify a mammalian NPF called WHAMM (WASP homolog associated with actin, membranes, and microtubules) that localizes to the cis-Golgi apparatus and tubulo-vesicular membrane transport intermediates. The modular organization of WHAMM includes an N-terminal domain that mediates Golgi membrane association, a coiled-coil region that binds microtubules, and a WCA segment that stimulates Arp2/3-mediated actin polymerization. Overexpression and depletion studies indicate that WHAMM is important for maintaining Golgi structure and facilitating anterograde membrane transport. The ability of WHAMM to interact with microtubules plays a role in membrane tubulation, while its capacity to induce actin assembly promotes tubule elongation. Thus, WHAMM is an important regulator of membrane dynamics functioning at the interface of the microtubule and actin cytoskeletons.  相似文献   

13.
BACKGROUND: Interactions between microtubules and actin filaments (F-actin) are critical for cellular motility processes ranging from directed cell locomotion to cytokinesis. However, the cellular bases of these interactions remain poorly understood. We have analyzed the role of microtubules in generation of a contractile array comprised of F-actin and myosin-2 that forms around wounds made in Xenopus oocytes. RESULTS: After wounding, microtubules are transported to the wound edge in association with F-actin that is itself recruited to wound borders via actomyosin-powered cortical flow. This transport generates sufficient force to buckle and break microtubules at the wound edge. Transport is complemented by local microtubule assembly around wound borders. The region of microtubule breakage and assembly coincides with a zone of actin assembly, and perturbation of the microtubule cytoskeleton disrupts this zone as well as local recruitment of the Arp2/3 complex and myosin-2. CONCLUSIONS: The results reveal transport of microtubules in association with F-actin that is pulled to wound borders via actomyosin-based contraction. Microtubules, in turn, focus zones of actin assembly and myosin-2 recruitment at the wound border. Thus, wounding triggers the formation of a spatially coordinated feedback loop in which transport and assembly of microtubules maintains actin and myosin-2 in close proximity to the closing contractile array. These results are surprisingly reminiscent of recent findings in locomoting cells, suggesting that similar feedback interactions may be generally employed in a variety of fundamental cell motility processes.  相似文献   

14.
Src family tyrosine kinases are important signaling enzymes in the neuronal growth cone, and they have been implicated in axon guidance; however, the detailed localization, trafficking, and cellular functions of Src kinases in live growth cones are unclear. Here, we cloned two novel Aplysia Src kinases, termed Src1 and Src2, and we show their association with both the plasma membrane and the microtubule cytoskeleton in the growth cone by live cell imaging, immunocytochemistry, and cell fractionation. Activated Src2 is enriched in filopodia tips. Interestingly, Src2-enhanced green fluorescent protein–positive endocytic vesicles and tubulovesicular structures undergo microtubule-mediated movements that are bidirectional in the central domain and mainly retrograde in the peripheral domain. To further test the role of microtubules in Src trafficking in the growth cone, microtubules were depleted with either nocodazole or vinblastine treatment, resulting in an increase in Src2 plasma membrane levels in all growth cone domains. Our data suggest that microtubules regulate the steady-state level of active Src at the plasma membrane by mediating retrograde recycling of endocytosed Src. Expression of constitutively active Src2 results in longer filopodia that protrude from smaller growth cones, implicating Src2 in controlling the size of filopodia and lamellipodia.  相似文献   

15.
Actions of cytochalasin B (CB) on cytoskeletons and motility of growth cones from cultured Aplysia neurons were studied using a rapid flow perfusion chamber and digital video light microscopy. Living growth cones were observed using differential interference contrast optics and were also fixed at various time points to assay actin filament (F-actin) and microtubule distributions. Treatment with CB reversibly blocked motility and eliminated most of the phalloidin-stainable F-actin from the leading lamella. The loss of F-actin was nearly complete within 2-3 min of CB application and was largely reversed within 5-6 min of CB removal. The loss and recovery of F-actin were found to occur with a very distinctive spatial organization. Within 20-30 s of CB application, F-actin networks receded from the entire peripheral margin of the lamella forming a band devoid of F-actin. This band widened as F-actin receded at rates of 3-6 microns/min. Upon removal of CB, F-actin began to reappear within 20-30 s. The initial reappearance of F-actin took two forms: a coarse isotropic matrix of F-actin bundles throughout the lamella, and a denser matrix along the peripheral margin. The denser peripheral matrix then expanded in width, extending centrally to replace the coarse matrix at rates again between 3-6 microns/min. These results suggest that actin normally polymerizes at the leading edge and then flows rearward at a rate between 3-6 microns/min. CB treatment was also observed to alter the distribution of microtubules, assayed by antitubulin antibody staining. Normally, microtubules are restricted to the neurite shaft and a central growth cone domain. Within approximately 5 min after CB application, however, microtubules began extending into the lamellar region, often reaching the peripheral margin. Upon removal of CB, the microtubules were restored to their former central localization. The timing of these microtubule redistributions is consistent with their being secondary to effects of CB on lamellar F-actin.  相似文献   

16.
Src tyrosine kinases have been implicated in axonal growth and guidance; however, the underlying cellular mechanisms are not well understood. Specifically, it is unclear which aspects of actin organization and dynamics are regulated by Src in neuronal growth cones. Here, we investigated the function of Src2 and one of its substrates, cortactin, in lamellipodia and filopodia of Aplysia growth cones. We found that up-regulation of Src2 activation state or cortactin increased lamellipodial length, protrusion time, and actin network density, whereas down-regulation had opposite effects. Furthermore, Src2 or cortactin up-regulation increased filopodial density, length, and protrusion time, whereas down-regulation promoted lateral movements of filopodia. Fluorescent speckle microscopy revealed that rates of actin assembly and retrograde flow were not affected in either case. In summary, our results support a model in which Src and cortactin regulate growth cone motility by increasing actin network density and protrusion persistence of lamellipodia by controlling the state of actin-driven protrusion versus retraction. In addition, both proteins promote the formation and stability of actin bundles in filopodia.  相似文献   

17.
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.  相似文献   

18.
We have used multimode fluorescent speckle microscopy (FSM) and correlative differential interference contrast imaging to investigate the actin-microtubule (MT) interactions and polymer dynamics known to play a fundamental role in growth cone guidance. We report that MTs explore the peripheral domain (P-domain), exhibiting classical properties of dynamic instability. MT extension occurs preferentially along filopodia, which function as MT polymerization guides. Filopodial bundles undergo retrograde flow and also transport MTs. Thus, distal MT position is determined by the rate of plus-end MT assembly minus the rate of retrograde F-actin flow. Short MT displacements independent of flow are sometimes observed. MTs loop, buckle, and break as they are transported into the T-zone by retrograde flow. MT breakage results in exposure of new plus ends which can regrow, and minus ends which rapidly undergo catastrophes, resulting in efficient MT turnover. We also report a previously undetected presence of F-actin arc structures, which exhibit persistent retrograde movement across the T-zone into the central domain (C-domain) at approximately 1/4 the rate of P-domain flow. Actin arcs interact with MTs and transport them into the C-domain. Interestingly, although the MTs associated with arcs are less dynamic than P-domain MTs, they elongate efficiently as a result of markedly lower catastrophe frequencies.  相似文献   

19.
The localized debundling of the axonal microtubule array and the entry of microtubules into axonal filopodia are two defining features of collateral branching. We report that nerve growth factor (NGF), a branch‐inducing signal, increases the frequency of microtubule debundling along the axon shaft of chicken embryonic sensory neurons. Sites of debundling correlate strongly with the localized targeting of microtubules into filopodia. Platinum replica electron microscopy suggests physical interactions between debundled microtubules and axonal actin filaments. However, as evidenced by depolymerization of actin filaments and inhibition of myosin II, actomyosin force generation does not promote debundling. In contrast, loss of actin filaments or inhibition of myosin II activity promotes debundling, indicating that axonal actomyosin forces suppress debundling. MAP1B is a microtubule associated protein that represses axon branching. Following treatment with NGF, microtubules penetrating filopodia during the early stages of branching exhibited lower levels of associated MAP1B. NGF increased and decreased the levels of MAP1B phosphorylated at a GSK‐3β site (pMAP1B) along the axon shaft and within axonal filopodia, respectively. The levels of MAP1B and pMAP1B were not altered at sites of debundling, relative to the rest of the axon. Unlike the previously determined effects of NGF on the axonal actin cytoskeleton, the effects of NGF on microtubule debundling were not affected by inhibition of protein synthesis. Collectively, these data indicate that NGF promotes localized axonal microtubule debundling, that actomyosin forces antagonize microtubule debundling, and that NGF regulates pMAP1B in axonal filopodia during the early stages of collateral branch formation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1441–1461, 2015  相似文献   

20.
Taxol exerts a potent effect on the assembly and stability of cellular microtubules. In the present study this drug was injected into the facial nerve of mice, and its influence on retrograde axonal transport and on morphology of the facial nerve cell bodies was monitored. A reduction in the amount of retrogradely transported fluorescein isothiocyanate-conjugated wheat germ agglutinin from the peripheral field of innervation to neuronal perikarya was demonstrated by cytofluorometry. Transport was not completely blocked, since some degree of tracer accumulation was found in most neurons. Morphometric analysis was employed to determine the volume fraction of cells and cell nuclei as well as nucleolar size on micrographs of the facial nucleus. After facial nerve transection the reaction in nerve cell bodies was similar in taxol-injected animals and in animals not exposed to this substance. Furthermore, intraneural injection of taxol without prior nerve section resulted in nucleolar enlargement. The present data show that taxol-induced disturbances in microtubule organisation interferes with the retrograde axonal transport and suggest that changes associated with the retrograde nerve cell reaction may develop when the transfer of material from the peripheral field of innervation is disturbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号